PuSH - Publikationsserver des Helmholtz Zentrums München

Sieber-Schaefer, F.* ; Jiang, M.* ; Kromer, A.P.E.* ; Nguyen, A.* ; Molbay, M.* ; Pinto Carneiro, S.* ; Juergens, D.* ; Burgstaller, G. ; Popper, B.* ; Winkeljann, B.* ; Merkel, O.M.*

Machine learning-enabled polymer discovery for enhanced pulmonary siRNA delivery.

Adv. Func. Mat., DOI: 10.1002/adfm.202502805 (2025)
Verlagsversion Forschungsdaten DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
Nucleic acid therapeutics are poised to revolutionize the clinical treatment of diseases once considered undruggable. Although these therapeutic approaches hold significant promise, delivering the nucleic acid cargo remains challenging due to susceptibility to nuclease degradation. Among all carrier systems, polymers stand out for their high tunability and cost-effectiveness. However, their flexible structure greatly expands the chemical space, making experimental exploration both costly and time-consuming. Leveraging published data and machine learning methods provides a valuable strategy to address these issues. The present study demonstrates a way to merge data from multiple sources and uses this information to identify new polyesters that effectively deliver siRNA into lung cells. One newly discovered polymer is further examined in ex vivo experiments and tested in a mouse model. The results indicate that a polymer capable of silencing specific genes in vivo can be discovered through machine learning, circumventing an extensive trial-and-error process in the search for novel materials.
Impact Factor
Scopus SNIP
Altmetric
19.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter machine learning; poly(beta)aminoester; polyester; polymer discovery; polymeric nanoparticle; pulmonary delivery; siRNA delivery; Lung; Nanoparticles; Polyethylenimine; Release; Disease; Cells
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 1616-301X
e-ISSN 1616-3028
Verlag Wiley
Verlagsort Weinheim
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Lung Research
PSP-Element(e) G-501600-014
Förderungen China Scholarship Council
Scopus ID 105008454045
Erfassungsdatum 2025-06-25