Simulating dynamic tumor contrast enhancement in breast MRI using conditional generative adversarial networks.
J. Med. Imaging 12:S22014 (2025)
PURPOSE: Deep generative models and synthetic data generation have become essential for advancing computer-assisted diagnosis and treatment. We explore one such emerging and particularly promising application of deep generative models, namely, the generation of virtual contrast enhancement. This allows to predict and simulate contrast enhancement in breast magnetic resonance imaging (MRI) without physical contrast agent injection, thereby unlocking lesion localization and categorization even in patient populations where the lengthy, costly, and invasive process of physical contrast agent injection is contraindicated. APPROACH: We define a framework for desirable properties of synthetic data, which leads us to propose the scaled aggregate measure (SAMe) consisting of a balanced set of scaled complementary metrics for generative model training and convergence evaluation. We further adopt a conditional generative adversarial network to translate from non-contrast-enhanced T 1 -weighted fat-saturated breast MRI slices to their dynamic contrast-enhanced (DCE) counterparts, thus learning to detect, localize, and adequately highlight breast cancer lesions. Next, we extend our model approach to jointly generate multiple DCE-MRI time points, enabling the simulation of contrast enhancement across temporal DCE-MRI acquisitions. In addition, three-dimensional U-Net tumor segmentation models are implemented and trained on combinations of synthetic and real DCE-MRI data to investigate the effect of data augmentation with synthetic DCE-MRI volumes. RESULTS: Conducting four main sets of experiments, (i) the variation across single metrics demonstrated the value of SAMe, and (ii) the quality and potential of virtual contrast injection for tumor detection and localization were shown. Segmentation models (iii) augmented with synthetic DCE-MRI data were more robust in the presence of domain shifts between pre-contrast and DCE-MRI domains. The joint synthesis approach of multi-sequence DCE-MRI (iv) resulted in temporally coherent synthetic DCE-MRI sequences and indicated the generative model's capability of learning complex contrast enhancement patterns. CONCLUSIONS: Virtual contrast injection can result in accurate synthetic DCE-MRI images, potentially enhancing breast cancer diagnosis and treatment protocols. We demonstrate that detecting, localizing, and segmenting tumors using synthetic DCE-MRI is feasible and promising, particularly considering patients where contrast agent injection is risky or contraindicated. Jointly generating multiple subsequent DCE-MRI sequences can increase image quality and unlock clinical applications assessing tumor characteristics related to its response to contrast media injection as a pillar for personalized treatment planning.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Breast Cancer ; Contrast Agent ; Dynamic Contrast-enhanced Magnetic Resonance Imaging ; Generative Models ; Synthetic Data
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
2329-4302
e-ISSN
2329-4310
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 12,
Heft: Suppl 2,
Seiten: ,
Artikelnummer: S22014
Supplement: ,
Reihe
Verlag
SPIE
Verlagsort
Bellingham, Wash.
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
Copyright
Erfassungsdatum
2025-07-16