Abel, L.* ; Richer, R.* ; Burkhardt, F.* ; Kurz, M.* ; Ringgold, V.* ; Schindler-Gmelch, L.* ; Eskofier, B.M. ; Rohleder, N.*
Body movements as biomarkers: Machine Learning-based prediction of HPA axis reactivity to stress.
Psychoneuroendocrinology 179:107528 (2025)
Body movements and posture provide valuable insights into stress responses, yet their relationship with endocrine biomarkers of the stress response remains underexplored. This study investigates whether movement patterns during the Trier Social Stress Test (TSST) and the friendly-TSST (f-TSST) can predict cortisol reactivity. Using motion capturing, movement data from 41 participants were analyzed alongside salivary cortisol responses. Machine learning models achieved a classification accuracy of 65.2 % for distinguishing cortisol responders from non-responders and a regression mean absolute error of 2.94 nmol/l for predicting cortisol increase. Findings suggest that movement dynamics can serve as proxies of endocrine stress responses, contributing to objective, non-invasive stress assessment methods.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Cortisol ; Machine Learning ; Movement ; Posture ; Stress ; Tsst; Psychosocial Stress; Salivary Cortisol; Responses; Law; Perception; Expression; Shame; Life
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0306-4530
e-ISSN
1873-3360
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 179,
Heft: ,
Seiten: ,
Artikelnummer: 107528
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of AI for Health (AIH)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540008-001
Förderungen
Deutsche Forschungsgemeinschaft (DFG, German Research foundation)
Copyright
Erfassungsdatum
2025-07-03