Benchmarking of T cell receptor-epitope predictors with ePytope-TCR.
    
    
        
    
    
        
        Cell Genom. 5:100946 (2025)
    
    
    
		
		
			
				Understanding the recognition of disease-derived epitopes through T cell receptors (TCRs) has the potential to serve as a stepping stone for the development of efficient immunotherapies and vaccines. While a plethora of sequence-based prediction methods for TCR-epitope binding exists, their pre-trained models have not been comparatively evaluated. To alleviate this shortcoming, we integrated 21 TCR-epitope prediction models into the immune-prediction framework ePytope, offering interoperable interfaces with standard TCR repertoire data formats. We showcase the applicability of ePytope-TCR by evaluating the performance of these publicly available prediction models on two challenging datasets. While novel predictors successfully predicted binding to frequently observed epitopes, all methods failed for less frequently observed epitopes. Further, we detected a strong bias in the prediction scores between different epitope classes. We envision this benchmark to guide researchers in their choice of a predictor and to accelerate the method development by defining standardized evaluation settings.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        T Cell Immunology ; T Cell Receptor ; Tcr-epitope Prediction ; Adaptive Immunology ; Benchmarking ; Deep Learning ; Machine Learning
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2025
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2025
    
 
    
    
        ISSN (print) / ISBN
        2666-979X
    
 
    
        e-ISSN
        2666-979X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 5,  
	    Heft: 8,  
	    Seiten: ,  
	    Artikelnummer: 100946 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Elsevier
        
 
        
            Verlagsort
            50 Hampshire St, Floor 5, Cambridge, Ma 02139 Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-503800-001
G-503800-013
    
 
    
        Förderungen
        De.NBI Cloud within the German Network for Bioinformatics Infrastructure (de.NBI)
ELIXIR-DE (Forschungszentrum Julich)
Helmholtz Associ-ation under the joint research school "Munich School for Data Science-MUDS"
Joachim Herz Stiftung
BMBF grant
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2025-07-18