PuSH - Publikationsserver des Helmholtz Zentrums München

Burankova, Y.* ; Abele, M.* ; Bakhtiari, M.* ; von Toerne, C. ; Barth, T.K.* ; Schweizer, L.* ; Giesbertz, P.* ; Schmidt, J.R.* ; Kalkhof, S.* ; Müller-Deile, J.* ; van Veelen, P.A.* ; Mohammed, Y.* ; Hammer, E.* ; Arend, L.* ; Adamowicz, K.* ; Laske, T.* ; Hartebrodt, A.* ; Frisch, T.* ; Meng, C.* ; Matschinske, J.* ; Späth, J.* ; Röttger, R.* ; Schwämmle, V.* ; Hauck, S.M. ; Lichtenthaler, S.F.* ; Imhof, A.* ; Mann, M.* ; Ludwig, C.* ; Kuster, B.* ; Baumbach, J.* ; Zolotareva, O.*

Privacy-preserving multicenter differential protein abundance analysis with FedProt.

Nat. Comput. Sci., DOI: 10.1038/s43588-025-00832-7 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Quantitative mass spectrometry has revolutionized proteomics by enabling simultaneous quantification of thousands of proteins. Pooling patient-derived data from multiple institutions enhances statistical power but raises serious privacy concerns. Here we introduce FedProt, the first privacy-preserving tool for collaborative differential protein abundance analysis of distributed data, which utilizes federated learning and additive secret sharing. In the absence of a multicenter patient-derived dataset for evaluation, we created two: one at five centers from E. coli experiments and one at three centers from human serum. Evaluations using these datasets confirm that FedProt achieves accuracy equivalent to the DEqMS method applied to pooled data, with completely negligible absolute differences no greater than 4 × 10-12. By contrast, -log10P computed by the most accurate meta-analysis methods diverged from the centralized analysis results by up to 25-26.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Mass-spectrometry; Genes; Metaanalysis; Powerful; Package
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2662-8457
e-ISSN 2662-8457
Verlag Springer
Verlagsort Campus, 4 Crinan St, London, N1 9xw, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-505700-001
Förderungen Technische Universitat Munchen
Project SyMBoD
German Federal Ministry of Education and Research (BMBF)
European Union's Horizon Research and Innovation program
CVDLINK project
Lander
Funds of the Excellence Strategy of the Federal Government
Universitat Hamburg
Federal Ministry of Education and Research (BMBF)
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
European Union's Horizon2020 research and innovation program
Scopus ID 105010612149
PubMed ID 40646319
Erfassungsdatum 2025-07-21