PuSH - Publikationsserver des Helmholtz Zentrums München

Berger, C. ; Kim, M. ; Platz, L.I. ; Eigenberger, A.* ; Prantl, L.* ; Liu, P. ; Gujrati, V. ; Ntziachristos, V. ; Jüstel, D. ; Pleitez, M.A.

Bayesian reconstruction of rapidly scanned mid-infrared optoacoustic signals enables fast, label-free chemical microscopy.

Sci. Adv. 11:eadu7319 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Hyperspectral optoacoustic microscopy (OAM) enables obtaining images with label-free biomolecular contrast, offering excellent perspectives as a diagnostic tool to assess freshly excised and unprocessed biological samples. However, time-consuming raster scanning image formation currently limits the translation potential of OAM into the clinical setting, for instance, in intraoperative histopathological assessments, where micrographs of excised tissue need to be taken within a few minutes for fast clinical decision-making. Here, we present a non-data-driven computational framework tailored to enable fast OAM by rapid data acquisition and model-based image reconstruction, termed Bayesian raster-computed optoacoustic microscopy (BayROM). Unlike data-driven approaches, BayROM does not require training datasets, but instead, it uses probabilistic model-based reconstruction to facilitate fast high-resolution imaging. We show that BayROM enables acquiring micrographs 10 times faster on average than conventional raster scanning microscopy and provides sufficient image quality to facilitate the intraoperative histological assessment of processed fat grafts for autologous fat transfer.
Impact Factor
Scopus SNIP
Altmetric
12.500
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2375-2548
e-ISSN 2375-2548
Zeitschrift Science Advances
Quellenangaben Band: 11, Heft: 34, Seiten: , Artikelnummer: eadu7319 Supplement: ,
Verlag American Association for the Advancement of Science (AAAS)
Verlagsort Washington, DC [u.a.]
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-505594-001
G-505500-001
G-503800-001
PubMed ID 40845115
Erfassungsdatum 2025-10-01