PuSH - Publikationsserver des Helmholtz Zentrums München

An, Y. ; Bergant, V.* ; Grünke, C.* ; Bonnal, B.* ; Henrici, A.* ; Pichlmair, A. ; Schubert, B. ; Marsico, A.

TransFactor-Prediction of pro-viral SARS-CoV-2 host factors using a protein language model.

Bioinformatics 41:btaf491 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
MOTIVATION: Recent pandemics have revealed significant gaps in our understanding of viral pathogenesis, exposing an urgent need for methods to identify and prioritize key host proteins (host factors) as potential targets for antiviral treatments. De novo generation of experimental datasets is limited by their heterogeneity, and for looming future pandemics, may not be feasible due to limitations of experimental approaches. RESULTS: Here we present TransFactor, a computational framework for predicting and prioritizing candidate host factors using only protein sequence data. It leverages the pre-trained ESM-2 protein language model, fine-tuned on a limited set of experimentally determined host factors aggregated from 33 independent SARS-CoV-2 studies. TransFactor outperforms machine and deep learning baselines and its predictions align with Gene Ontology enrichments of known host factors, but also provide interpretability through a computational alanine scan, enabling the identification of pro-viral protein domains such as COMM, PX, and RRM, that may be used to direct experimental investigations of virus biology and guide rational design of antiviral therapies. Our findings demonstrate the potential of transformer-based models to advance host factor prediction, providing a framework extendable to orthogonal input modalities and other infectious diseases, enhancing our preparedness for current and future viral threats. AVAILABILITY: Source code is available at https://github.com/marsico-lab/TransFactor. A full reproducibility package, including code, trained models, and data, is archived on Zenodo (https://doi.org/10.5281/zenodo.16793684). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 41, Heft: 9, Seiten: , Artikelnummer: btaf491 Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
30203 - Molecular Targets and Therapies
Forschungsfeld(er) Enabling and Novel Technologies
Immune Response and Infection
PSP-Element(e) G-503800-010
G-503800-001
G-502700-003
Förderungen Helmholtz Association
BMBF Clusters4Future
Scopus ID 105016381487
PubMed ID 40929136
Erfassungsdatum 2025-11-04