Pietzner, M.* ; Beuchel, C.* ; Demircan, K.* ; Hoffmann Anton, J.* ; Zeng, W.* ; Römisch-Margl, W. ; Yasmeen, S.* ; Uluvar, B.* ; Zoodsma, M.* ; Koprulu, M.* ; Kastenmüller, G. ; Carrasco-Zanini, J.* ; Langenberg, C.*
Machine learning-guided deconvolution of plasma protein levels.
Mol. Syst. Biol., DOI: 10.1038/s44320-025-00158-6 (2025)
Proteomic techniques now measure thousands of proteins circulating in blood at population scale, but successful translation into clinically useful protein biomarkers is hampered by our limited understanding of their origins. Here, we use machine learning to systematically identify a median of 20 factors (range: 1-37) out of >1800 participant and sample charateristics that jointly explained an average of 19.4% (max. 100.0%) of the variance in plasma levels of ~3000 protein targets among 43,240 individuals. Proteins segregated into distinct clusters according to their explanatory factors, with modifiable characteristics explaining more variance compared to genetic variation (median: 10.0% vs 3.9%), and factors being largely consistent across the sexes and ancestral groups. We establish a knowledge graph that integrates our findings with genetic studies and drug characteristics to guide identification of potential drug target engagement markers. We demonstrate the value of our resource by identifying disease-specific biomarkers, like matrix metalloproteinase 12 for abdominal aortic aneurysm, and by developing a widely applicable framework for phenotype enrichment (R package: https://github.com/comp-med/r-prodente ). All results are explorable via an interactive web portal ( https://omicscience.org/apps/prot_foundation ).
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Biomarker ; Drugs ; Enrichment ; Plasma Proteomics; Genetics; Health; Associations; Proteomics; Expression; Atlas
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
1744-4292
e-ISSN
1744-4292
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band:
Heft:
Seiten:
Artikelnummer:
Supplement:
Reihe
Verlag
EMBO Press
Verlagsort
Campus, 4 Crinan St, London, N1 9xw, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503891-001
Förderungen
HORIZON EUROPE European Research Council
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Copyright
Erfassungsdatum
2025-10-23