PuSH - Publikationsserver des Helmholtz Zentrums München

Pietzner, M.* ; Beuchel, C.* ; Demircan, K.* ; Hoffmann Anton, J.* ; Zeng, W.* ; Römisch-Margl, W. ; Yasmeen, S.* ; Uluvar, B.* ; Zoodsma, M.* ; Koprulu, M.* ; Kastenmüller, G. ; Carrasco-Zanini, J.* ; Langenberg, C.*

Machine learning-guided deconvolution of plasma protein levels.

Mol. Syst. Biol., DOI: 10.1038/s44320-025-00158-6 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Proteomic techniques now measure thousands of proteins circulating in blood at population scale, but successful translation into clinically useful protein biomarkers is hampered by our limited understanding of their origins. Here, we use machine learning to systematically identify a median of 20 factors (range: 1-37) out of >1800 participant and sample charateristics that jointly explained an average of 19.4% (max. 100.0%) of the variance in plasma levels of ~3000 protein targets among 43,240 individuals. Proteins segregated into distinct clusters according to their explanatory factors, with modifiable characteristics explaining more variance compared to genetic variation (median: 10.0% vs 3.9%), and factors being largely consistent across the sexes and ancestral groups. We establish a knowledge graph that integrates our findings with genetic studies and drug characteristics to guide identification of potential drug target engagement markers. We demonstrate the value of our resource by identifying disease-specific biomarkers, like matrix metalloproteinase 12 for abdominal aortic aneurysm, and by developing a widely applicable framework for phenotype enrichment (R package: https://github.com/comp-med/r-prodente ). All results are explorable via an interactive web portal ( https://omicscience.org/apps/prot_foundation ).
Impact Factor
Scopus SNIP
Altmetric
7.700
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Biomarker ; Drugs ; Enrichment ; Plasma Proteomics; Genetics; Health; Associations; Proteomics; Expression; Atlas
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 1744-4292
e-ISSN 1744-4292
Verlag EMBO Press
Verlagsort Campus, 4 Crinan St, London, N1 9xw, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503891-001
Förderungen HORIZON EUROPE European Research Council
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Scopus ID 105018311813
PubMed ID 41068475
Erfassungsdatum 2025-10-23