PuSH - Publikationsserver des Helmholtz Zentrums München

Miladinovic, D.* ; Höppe, T. ; Chevalley, M.* ; Georgiou, A.* ; Stuart, L.* ; Mehrjou, A.* ; Bantscheff, M.* ; Schölkopf, B.* ; Schwab, P.*

In silico biological discovery with large perturbation models.

Nat. Comput. Sci., DOI: 10.1038/s43588-025-00870-1 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Data generated in perturbation experiments link perturbations to the changes they elicit and therefore contain information relevant to numerous biological discovery tasks-from understanding the relationships between biological entities to developing therapeutics. However, these data encompass diverse perturbations and readouts, and the complex dependence of experimental outcomes on their biological context makes it challenging to integrate insights across experiments. Here we present the large perturbation model (LPM), a deep-learning model that integrates multiple, heterogeneous perturbation experiments by representing perturbation, readout and context as disentangled dimensions. LPM outperforms existing methods across multiple biological discovery tasks, including in predicting post-perturbation transcriptomes of unseen experiments, identifying shared molecular mechanisms of action between chemical and genetic perturbations, and facilitating the inference of gene-gene interaction networks. LPM learns meaningful joint representations of perturbations, readouts and contexts, enables the study of biological relationships in silico and could considerably accelerate the derivation of insights from pooled perturbation experiments.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2662-8457
e-ISSN 2662-8457
Verlag Springer
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530003-001
Scopus ID 105018845204
PubMed ID 41094040
Erfassungsdatum 2025-10-27