Ma, J.Z.* ; Xiao, F.F.* ; Xiong, M.* ; Andrew, A.S.* ; Brenner, H.* ; Duell, E.J.* ; Haugen, A.* ; Hoggart, C.* ; Hung, R.J.* ; Lazarus, P.* ; Liu, C.L.* ; Matsuo, K.* ; Mayordomok, J.I.* ; Schwartz, A.G.* ; Staratschek-Jox, A.* ; Wichmann, H.-E. ; Yang, P.* ; Amos, C.I.*
Natural and orthogonal interaction framework for modeling gene-environment interactions with application to lung cancer.
Hum. Hered. 73, 185-194 (2012)
Objectives: We aimed at extending the Natural and Orthogonal Interaction (NOIA) framework, developed for modeling gene-gene interactions in the analysis of quantitative traits, to allow for reduced genetic models, dichotomous traits, and gene-environment interactions. We evaluate the performance of the NOIA statistical models using simulated data and lung cancer data. Methods: The NOIA statistical models are developed for additive, dominant, and recessive genetic models as well as for a binary environmental exposure. Using the Kronecker product rule, a NOIA statistical model is built to model gene-environment interactions. By treating the genotypic values as the logarithm of odds, the NOIA statistical models are extended to the analysis of case-control data. Results: Our simulations showed that power for testing associations while allowing for interaction using the NOIA statistical model is much higher than using functional models for most of the scenarios we simulated. When applied to lung cancer data, much smaller p values were obtained using the NOIA statistical model for either the main effects or the SNP-smoking interactions for some of the SNPs tested. Conclusion: The NOIA statistical models are usually more powerful than the functional models in detecting main effects and interaction effects for both quantitative traits and binary traits.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Statistical Power ; Genetic Association Studies ; Case-control Association Analysis ; Gene-environment Interaction Environmental Risk Factor ; Association Mapping ; Orthogonal Modeling; GENOME-WIDE ASSOCIATION; MISSING HERITABILITY; LOCI
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2012
Prepublished im Jahr
HGF-Berichtsjahr
2012
ISSN (print) / ISBN
0001-5652
e-ISSN
1423-0062
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 73,
Heft: 4,
Seiten: 185-194
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Karger
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
POF Topic(s)
30503 - Chronic Diseases of the Lung and Allergies
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-503900-001
Förderungen
Copyright
Erfassungsdatum
2012-10-26