PuSH - Publikationsserver des Helmholtz Zentrums München

Blasi, T. ; Hennig, H.* ; Summers, H.D.* ; Theis, F.J. ; Cerveira, J.* ; Patterson, J.O.* ; Davies, D.* ; Filby, A.* ; Carpenter, A.E.* ; Rees, P.*

Label-free cell cycle analysis for high-throughput imaging flow cytometry.

Nat. Commun. 7:10256 (2016)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Imaging flow cytometry combines the high-throughput capabilities of conventional flow cytometry with single-cell imaging. Here we demonstrate label-free prediction of DNA content and quantification of the mitotic cell cycle phases by applying supervised machine learning to morphological features extracted from brightfield and the typically ignored darkfield images of cells from an imaging flow cytometer. This method facilitates non-destructive monitoring of cells avoiding potentially confounding effects of fluorescent stains while maximizing available fluorescence channels. The method is effective in cell cycle analysis for mammalian cells, both fixed and live, and accurately assesses the impact of a cell cycle mitotic phase blocking agent. As the same method is effective in predicting the DNA content of fission yeast, it is likely to have a broad application to other cell types.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
11.329
2.922
133
158
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Fixed Cells; Software; Microscopy; Division; Dynamics; Feedback; Mitosis; Growth
Sprache englisch
Veröffentlichungsjahr 2016
HGF-Berichtsjahr 2016
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 7, Heft: , Seiten: , Artikelnummer: 10256 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Scopus ID 84953896921
PubMed ID 26739115
Erfassungsdatum 2016-01-12