PuSH - Publikationsserver des Helmholtz Zentrums München

Defining lower limits of biodegradation: atrazine degradation regulated by mass transfer and maintenance demand in Arthrobacter aurescens TC1.

ISME J. 13, 2236-2251 (2019)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
( )Exploring adaptive strategies by which microorganisms function and survive in low-energy natural environments remains a grand goal of microbiology, and may help address a prime challenge of the 21st century: degradation of man-made chemicals at low concentrations ("micropollutants"). Here we explore physiological adaptation and maintenance energy requirements of a herbicide (atrazine)-degrading microorganism (Arthrobacter aurescens TC1) while concomitantly observing mass transfer limitations directly by compound-specific isotope fractionation analysis. Chemostat-based growth triggered the onset of mass transfer limitation at residual concentrations of 30 mu g L-1 of atrazine with a bacterial population doubling time (t(d)) of 14 days, whereas exacerbated energy limitation was induced by retentostat-based near-zero growth (t(d) = 265 days) at 12 +/- 3 mu g L-1 residual concentration. Retentostat cultivation resulted in (i) complete mass transfer limitation evidenced by the disappearance of isotope fractionation (epsilon C-13 = -0.45%o +/- 0.36 parts per thousand) and (ii) a twofold decrease in maintenance energy requirement compared with chemostat cultivation. Proteomics revealed that retentostat and chemostat cultivation under mass transfer limitation share low protein turnover and expression of stress-related proteins. Mass transfer limitation effectuated slow-down of metabolism in retentostats and a transition from growth phase to maintenance phase indicating a limit of similar or equal to 10 mu g L-1 for long-term atrazine degradation. Further studies on other ecosystem-relevant microorganisms will substantiate the general applicability of our finding that mass transfer limitation serves as a trigger for physiological adaptation, which subsequently defines a lower limit of biodegradation.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
9.493
2.227
16
22
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter S-triazine Ring; Geobacter-metallireducens; Isotope Fractionation; Label-free; Growth; Limitation; Responses; Energy; Transformation; Physiology
Sprache englisch
Veröffentlichungsjahr 2019
HGF-Berichtsjahr 2019
ISSN (print) / ISBN 1751-7362
e-ISSN 1751-7370
Zeitschrift ISME Journal
Quellenangaben Band: 13, Heft: 9, Seiten: 2236-2251 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Verlagsort Macmillan Building, 4 Crinan St, London N1 9xw, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 20403 - Sustainable Water Management
30203 - Molecular Targets and Therapies
Forschungsfeld(er) Environmental Sciences
Enabling and Novel Technologies
PSP-Element(e) G-504390-001
G-505700-001
A-630700-001
Scopus ID 85065710537
PubMed ID 31073212
Erfassungsdatum 2019-05-17