Ghaffari, M.H.* ; Jahanbekam, A.* ; Sadri, H.* ; Schuh, K.* ; Dusel, G.* ; Prehn, C. ; Adamski, J. ; Koch, C.* ; Sauerwein, H.*
     
 
    
        
Metabolomics meets machine learning: Longitudinal metabolite profiling in serum of normal versus overconditioned cows and pathway analysis.
    
    
        
    
    
        
        J. Dairy Sci. 102, 11561-11585 (2019)
    
    
    
		
		
			
				This study aimed to investigate the differences in the metabolic profiles in serum of dairy cows that were normal or overconditioned when dried off for elucidating the pathophysiological reasons for the increased health disturbances commonly associated with overconditioning. Fifteen weeks antepartum, 38 multiparous Holstein cows were allocated to either a high body condition (HBCS; n = 19) group or a normal body condition (NBCS; n = 19) group and were fed different diets until dry-off to amplify the difference. The groups were also stratified for comparable milk yields (NBCS: 10,361 +/- 302 kg; HBCS: 10,315 +/- 437 kg; mean +/- standard deviation). At dry-off, the cows in the NBCS group (parity: 2.42 +/- 1.84; body weight: 665 +/- 64 kg) had a body condition score (BCS) <3.5 and backfat thickness (BFT) <1.2 cm, whereas the HBCS cows (parity: 3.37 +/- 1.67; body weight: 720 +/- 57 kg) had BCS >3.75 and BFT >1.4 cm. During the dry period and the subsequent lactation, both groups were fed identical diets but maintained the BCS and BFT differences. A targeted metabolomics (AbsoluteIDQ p180 kit, Biocrates Life Sciences AG, Innsbruck, Austria) approach was performed in serum samples collected on d -49, +3, +21, and +84 relative to calving for identifying and quantifying up to 188 metabolites from 6 different compound classes (acylcarnitines, AA, biogenic amines, glycerophospholipids, sphingolipids, and hexoses). The concentrations of 170 metabolites were above the limit of detection and could thus be used in this study. We used various machine learning (ML) algorithms (e.g., sequential minimal optimization, random forest, alternating decision tree, and naive Bayes-updatable) to analyze the metabolome data sets. The performance of each algorithm was evaluated by a leave-one-out cross-validation method. The accuracy of classification by the ML algorithms was lowest on d 3 compared with the other time points. Various ML methods (partial least squares discriminant analysis, random forest, information gain ranking) were then performed to identify those metabolites that were contributing most significantly to discriminating the groups. On d 21 after parturition, 12 metabolites (acetylcarnitine, hexadecanoyl-carnitine, hydroxyhexadecenoyl-carnitine, octadecanoyl-carnitine, octadecenoyl-carnitine, hydroxybutyryl-carnitine, glycine, leucine, phosphatidylcholine-diacyl-C40:3, trans-4-hydroxyproline, carnosine, and creatinine) were identified in this way. Pathway enrichment analysis showed that branched-chain AA degradation (before calving) and mitochondrial beta-oxidation of long-chain fatty acids along with fatty acid metabolism, purine metabolism, and alanine metabolism (after calving) were significantly enriched in HBCS compared with NBCS cows. Our results deepen the insights into the phenotype related to overconditioning from the preceding lactation and the pathophysiological sequelae such as increased lipolysis and ketogenesis and decreased feed intake.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Metabolomics ; Machine Learning ; Metabolic Pathway ; Transition Cow; Body Condition Score; Dairy-cows; Skeletal-muscle; Early Lactation; Energy-balance; Late Pregnancy; Transition; Identification; Association; Biomarkers
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2019
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2019
    
 
    
    
        ISSN (print) / ISBN
        0022-0302
    
 
    
        e-ISSN
        1525-3198
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 102,  
	    Heft: 12,  
	    Seiten: 11561-11585 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Elsevier
        
 
        
            Verlagsort
            Ste 800, 230 Park Ave, New York, Ny 10169 Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Molekulare Endokrinologie und Metabolismus (MEM)
    
 
    
        POF Topic(s)
        30201 - Metabolic Health
    
 
    
        Forschungsfeld(er)
        Genetics and Epidemiology
    
 
    
        PSP-Element(e)
        G-505600-003
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2019-10-09