PuSH - Publikationsserver des Helmholtz Zentrums München

Haugg, A.* ; Sladky, R.* ; Skouras, S.* ; McDonald, A.* ; Craddock, C.* ; Kirschner, M.* ; Herdener, M.* ; Koush, Y.* ; Papoutsi, M.* ; Keynan, J.N.* ; Hendler, T.* ; Cohen Kadosh, K.* ; Zich, C.* ; MacInnes, J.* ; Adcock, A.* ; Dickerson, K.* ; Chen, N.K.* ; Young, K.* ; Bodurka, J.* ; Yao, S.* ; Becker, B.* ; Auer, T.* ; Schweizer, R.* ; Pamplona, G.* ; Emmert, K.* ; Haller, S.* ; van de Ville, D.* ; Blefari, M.L.* ; Kim, D.Y.* ; Lee, J.H.* ; Marins, T.* ; Fukuda, M.* ; Sorger, B.* ; Kamp, T.* ; Liew, S.L.* ; Veit, R. ; Spetter, M.* ; Weiskopf, N.* ; Scharnowski, F.*

Can we predict real-time fMRI neurofeedback learning success from pretraining brain activity?

Hum. Brain Mapp. 41, 3839-3854 (2020)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.421
1.419
7
9
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Fmri ; Functional Neuroimaging ; Learning ; Meta-analysis ; Neurofeedback ; Real-time Fmri; Time Fmri Neurofeedback; Anterior Cingulate Cortex; Down-regulation; Self-regulation; Connectivity; Reduction; Networks; Pain; Modulation; Activation
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 1065-9471
e-ISSN 1097-0193
Zeitschrift Human Brain Mapping
Quellenangaben Band: 41, Heft: 14, Seiten: 3839-3854 Artikelnummer: , Supplement: ,
Verlag Wiley
Verlagsort 111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus Peer reviewed
POF Topic(s) 90000 - German Center for Diabetes Research
Forschungsfeld(er) Helmholtz Diabetes Center
PSP-Element(e) G-502400-001
Scopus ID 85088806073
PubMed ID 32729652
Erfassungsdatum 2020-10-07