möglich sobald bei der ZB eingereicht worden ist.
Experimental nephrotic syndrome leads to proteolytic activation of the epithelial sodium channel (ENaC) in the mouse kidney.
Am. J. Physiol.-Renal Physiol. 321, F480-F493 (2021)
Proteolytic activation of the renal epithelial sodium channel ENaC involves cleavage events in its α- and γ-subunits and is thought to mediate sodium retention in nephrotic syndrome (NS). However, detection of proteolytically processed ENaC in kidney tissue from nephrotic mice has been elusive so far. We used a refined Western blot technique to reliably discriminate full-length α- and γ-ENaC and their cleavage products after proteolysis at their proximal and distal cleavage sites (designated from the N-terminus), respectively. Proteolytic ENaC activation was investigated in kidneys from mice with experimental NS induced by doxorubicin or inducible podocin deficiency with or without treatment with the serine protease inhibitor aprotinin. Nephrotic mice developed sodium retention and increased expression of fragments of α- and γ-ENaC cleaved at both the proximal and more prominently at the distal cleavage site, respectively. Treatment with aprotinin but not with the mineralocorticoid receptor antagonist canrenoate prevented sodium retention and upregulation of the cleavage products in nephrotic mice. Increased expression of cleavage products of α- and γ-ENaC was similarly found in healthy mice treated with a low salt diet, sensitive to mineralocorticoid receptor blockade. In human nephrectomy specimens, γ-ENaC was found in the full-length form and predominantly cleaved at its distal cleavage site. In conclusion, murine experimental NS leads to aprotinin-sensitive proteolytic activation of ENaC at both proximal and more prominently distal cleavage sites of its α- and γ-subunit, most likely by urinary serine protease activity or proteasuria.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
3.377
0.000
2
3
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Enac ; Epithelial Sodium Channel ; Nephrotic Syndrome ; Proteolysis ; Serine Proteases; Sodium-channel; Gamma-subunit; Enac; Maturation; Cleavage; Trafficking; Plasmin
Sprache
englisch
Veröffentlichungsjahr
2021
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
1931-857X
e-ISSN
1522-1466
Quellenangaben
Band: 321,
Heft: 4,
Seiten: F480-F493
Verlag
American Physiological Society
Verlagsort
9650 Rockville Pike, Bethesda, Md 20814 Usa
Begutachtungsstatus
Peer reviewed
POF Topic(s)
90000 - German Center for Diabetes Research
Forschungsfeld(er)
Helmholtz Diabetes Center
PSP-Element(e)
G-502400-001
Förderungen
Deutsche Forschungsgemeinschaft (DFG)
WOS ID
WOS:000697792800003
Scopus ID
85116574952
PubMed ID
34423678
Erfassungsdatum
2021-10-04