Clavijo, J.M.* ; Glaysher, P.* ; Jitsev, J.* ; Katzy, J.M.*
Adversarial domain adaptation to reduce sample bias of a high energy physics event classifier.
Mach. Learn.: Sci. Technol. 3:015014 (2022)
We apply adversarial domain adaptation in unsupervised setting to reduce sample bias in a supervised high energy physics events classifier training. We make use of a neural network containing event and domain classifier with a gradient reversal layer to simultaneously enable signal versus background events classification on the one hand, while on the other hand minimizing the difference in response of the network to background samples originating from different Monte Carlo models via adversarial domain classification loss. We show the successful bias removal on the example of simulated events at the Large Hadron Collider with t (t) over barH signal versus t (t) over barb (b) over bar background classification and discuss implications and limitations of the method.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Adversarial Training ; Adversarial Neural Network ; Domain Adaptation ; Lhc ; Tth
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
2021
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
2632-2153
e-ISSN
2632-2153
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 3,
Heft: 1,
Seiten: ,
Artikelnummer: 015014
Supplement: ,
Reihe
Verlag
Institute of Physics Publishing (IOP)
Verlagsort
Temple Circus, Temple Way, Bristol Bs1 6be, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Helmholtz AI - FZJ (HAI - FZJ)
POF Topic(s)
Forschungsfeld(er)
PSP-Element(e)
Förderungen
Copyright
Erfassungsdatum
2022-01-28