Scherr, T.* ; Seiffarth, J.* ; Wollenhaupt, B.* ; Neumann, O.* ; Schilling, M.P.* ; Kohlheyer, D.* ; Scharr, H.* ; Noh, K.M.* ; Mikut, R.*
    
 
    
        
microbeSEG: A deep learning software tool with OMERO data management for efficient and accurate cell segmentation.
    
    
        
    
    
        
        PLoS ONE 17:e0277601 (2022)
    
    
    
		
		
			
				In biotechnology, cell growth is one of the most important properties for the characterization and optimization of microbial cultures. Novel live-cell imaging methods are leading to an ever better understanding of cell cultures and their development. The key to analyzing acquired data is accurate and automated cell segmentation at the single-cell level. Therefore, we present microbeSEG, a user-friendly Python-based cell segmentation tool with a graphical user interface and OMERO data management. microbeSEG utilizes a state-of-the-art deep learning-based segmentation method and can be used for instance segmentation of a wide range of cell morphologies and imaging techniques, e.g., phase contrast or fluorescence microscopy. The main focus of microbeSEG is a comprehensible, easy, efficient, and complete workflow from the creation of training data to the final application of the trained segmentation model. We demonstrate that accurate cell segmentation results can be obtained within 45 minutes of user time. Utilizing public segmentation datasets or pre-labeling further accelerates the microbeSEG workflow. This opens the door for accurate and efficient data analysis of microbial cultures.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Bacterial
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2022
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2022
    
 
    
    
        ISSN (print) / ISBN
        1932-6203
    
 
    
        e-ISSN
        
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 17,  
	    Heft: 11,  
	    Seiten: ,  
	    Artikelnummer: e0277601 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Public Library of Science (PLoS)
        
 
        
            Verlagsort
            Lawrence, Kan.
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Helmholtz AI - KIT (HAI - KIT)
Helmholtz AI - FZJ (HAI - FZJ)
    
 
    
        POF Topic(s)
        
    
 
    
        Forschungsfeld(er)
        
    
 
    
        PSP-Element(e)
        
    
 
    
        Förderungen
        KIT-Publication Fund of the Karlsruhe Institute of Technology
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
Helmholtz Imaging Platform within the project SATOMI
Helmholtz Association Initiative and Networking Funds through Helmholtz AI
HIDSS4Health - the Helmholtz Information & Data Science School for Health
Engineering Digital Futures: Supercomputing, Data Management and Information Security for Knowledge and Action
Helmholtz Association in the programs Natural, Artificial and Cognitive Information Processing
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2022-12-13