PuSH - Publikationsserver des Helmholtz Zentrums München

Scherr, T.* ; Seiffarth, J.* ; Wollenhaupt, B.* ; Neumann, O.* ; Schilling, M.P.* ; Kohlheyer, D.* ; Scharr, H.* ; Noh, K.M.* ; Mikut, R.*

microbeSEG: A deep learning software tool with OMERO data management for efficient and accurate cell segmentation.

PLoS ONE 17:e0277601 (2022)
Verlagsversion DOI
Open Access Gold
Creative Commons Lizenzvertrag
In biotechnology, cell growth is one of the most important properties for the characterization and optimization of microbial cultures. Novel live-cell imaging methods are leading to an ever better understanding of cell cultures and their development. The key to analyzing acquired data is accurate and automated cell segmentation at the single-cell level. Therefore, we present microbeSEG, a user-friendly Python-based cell segmentation tool with a graphical user interface and OMERO data management. microbeSEG utilizes a state-of-the-art deep learning-based segmentation method and can be used for instance segmentation of a wide range of cell morphologies and imaging techniques, e.g., phase contrast or fluorescence microscopy. The main focus of microbeSEG is a comprehensible, easy, efficient, and complete workflow from the creation of training data to the final application of the trained segmentation model. We demonstrate that accurate cell segmentation results can be obtained within 45 minutes of user time. Utilizing public segmentation datasets or pre-labeling further accelerates the microbeSEG workflow. This opens the door for accurate and efficient data analysis of microbial cultures.
Impact Factor
Scopus SNIP
Altmetric
3.752
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Bacterial
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 1932-6203
Zeitschrift PLoS ONE
Quellenangaben Band: 17, Heft: 11, Seiten: , Artikelnummer: e0277601 Supplement: ,
Verlag Public Library of Science (PLoS)
Verlagsort Lawrence, Kan.
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz AI - KIT (HAI - KIT)
Helmholtz AI - FZJ (HAI - FZJ)
Förderungen KIT-Publication Fund of the Karlsruhe Institute of Technology
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
Helmholtz Imaging Platform within the project SATOMI
Helmholtz Association Initiative and Networking Funds through Helmholtz AI
HIDSS4Health - the Helmholtz Information & Data Science School for Health
Engineering Digital Futures: Supercomputing, Data Management and Information Security for Knowledge and Action
Helmholtz Association in the programs Natural, Artificial and Cognitive Information Processing
Scopus ID 85143088482
Erfassungsdatum 2022-12-13