In recent years, it became clear that super-spreader events play an important role, particularly in the spread of airborne infections. We investigate a novel model for super-spreader events, not based on a heterogeneous contact graph but on a random contact rate: Many individuals become infected synchronously in single contact events. We use the branching-process approach for contact tracing to analyze the impact of super-spreader events on the effect of contact tracing. Here we neglect a tracing delay. Roughly speaking, we find that contact tracing is more efficient in the presence of super-spreaders if the fraction of symptomatics is small, the tracing probability is high, or the latency period is distinctively larger than the incubation period. In other cases, the effect of contact tracing can be decreased by super-spreaders. Numerical analysis with parameters suited for SARS-CoV-2 indicates that super-spreaders do not decrease the effect of contact tracing crucially in case of that infection.