PuSH - Publikationsserver des Helmholtz Zentrums München

CIARA: A cluster-independent algorithm for identifying markers of rare cell types from single-cell sequencing data.

Development 150:12 (2023)
Postprint DOI PMC
Open Access Green
A powerful feature of single-cell genomics is the possibility of identifying cell types from their molecular profiles. In particular, identifying novel rare cell types and their marker genes is a key potential of single-cell RNA sequencing. Standard clustering approaches perform well in identifying relatively abundant cell types, but tend to miss rarer cell types. Here, we have developed CIARA (Cluster Independent Algorithm for the identification of markers of RAre cell types), a cluster-independent computational tool designed to select genes that are likely to be markers of rare cell types. Genes selected by CIARA are subsequently integrated with common clustering algorithms to single out groups of rare cell types. CIARA outperforms existing methods for rare cell type detection, and we use it to find previously uncharacterized rare populations of cells in a human gastrula and among mouse embryonic stem cells treated with retinoic acid. Moreover, CIARA can be applied more generally to any type of single-cell omic data, thus allowing the identification of rare cells across multiple data modalities. We provide implementations of CIARA in user-friendly packages available in R and Python.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Altmetric
4.600
0.000
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Computational Method ; Rare Cell Types ; Single-cell Sequencing; Rna
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0950-1991
e-ISSN 1477-9129
Quellenangaben Band: 150, Heft: 11, Seiten: , Artikelnummer: 12 Supplement: ,
Verlag Company of Biologists
Verlagsort Bidder Building, Station Rd, Histon, Cambridge Cb24 9lf, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30204 - Cell Programming and Repair
30205 - Bioengineering and Digital Health
30203 - Molecular Targets and Therapies
Forschungsfeld(er) Stem Cell and Neuroscience
Enabling and Novel Technologies
Helmholtz Diabetes Center
PSP-Element(e) G-506290-001
G-506200-001
G-554200-001
G-503800-001
G-502800-001
Förderungen Joachim Herz Stiftung
Helmholtz Zentrum Munchen
Helmholtz Association
Scopus ID 85163907872
PubMed ID 37294170
Erfassungsdatum 2023-10-06