Lubatti, G. ; Stock, M. ; Iturbide Martinez De Albeniz, A. ; Ruiz Tejada Segura, M.L. ; Riepl, M. ; Tyser, R.C.V.* ; Danese, A.* ; Colomé-Tatché, M. ; Theis, F.J. ; Srinivas, S.* ; Torres-Padilla, M.E. ; Scialdone, A.
CIARA: A cluster-independent algorithm for identifying markers of rare cell types from single-cell sequencing data.
Development 150:12 (2023)
A powerful feature of single-cell genomics is the possibility of identifying cell types from their molecular profiles. In particular, identifying novel rare cell types and their marker genes is a key potential of single-cell RNA sequencing. Standard clustering approaches perform well in identifying relatively abundant cell types, but tend to miss rarer cell types. Here, we have developed CIARA (Cluster Independent Algorithm for the identification of markers of RAre cell types), a cluster-independent computational tool designed to select genes that are likely to be markers of rare cell types. Genes selected by CIARA are subsequently integrated with common clustering algorithms to single out groups of rare cell types. CIARA outperforms existing methods for rare cell type detection, and we use it to find previously uncharacterized rare populations of cells in a human gastrula and among mouse embryonic stem cells treated with retinoic acid. Moreover, CIARA can be applied more generally to any type of single-cell omic data, thus allowing the identification of rare cells across multiple data modalities. We provide implementations of CIARA in user-friendly packages available in R and Python.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Computational Method ; Rare Cell Types ; Single-cell Sequencing; Rna
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
0950-1991
e-ISSN
1477-9129
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 150,
Heft: 11,
Seiten: ,
Artikelnummer: 12
Supplement: ,
Reihe
Verlag
Company of Biologists
Verlagsort
Bidder Building, Station Rd, Histon, Cambridge Cb24 9lf, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30204 - Cell Programming and Repair
30205 - Bioengineering and Digital Health
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Stem Cell and Neuroscience
Enabling and Novel Technologies
Helmholtz Diabetes Center
PSP-Element(e)
G-506290-001
G-506200-001
G-554200-001
G-503800-001
G-502800-001
Förderungen
Joachim Herz Stiftung
Helmholtz Zentrum Munchen
Helmholtz Association
Copyright
Erfassungsdatum
2023-10-06