Tran, M. ; Lahiani, A.* ; Dicente Cid, Y.* ; Boxberg, M.* ; Lienemann, P. ; Matek, C. ; Wagner, S. ; Theis, F.J. ; Klaiman, E.* ; Peng, T.
B-Cos Aligned Transformers Learn Human-Interpretable Features.
In: (26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Vancouver, CANADA, 8-12 October 2023). Berlin [u.a.]: Springer, 2023. 514-524 (Lect. Notes Comput. Sc. ; 14227 LNCS)
Vision Transformers (ViTs) and Swin Transformers (Swin) are currently state-of-the-art in computational pathology. However, domain experts are still reluctant to use these models due to their lack of interpretability. This is not surprising, as critical decisions need to be transparent and understandable. The most common approach to understanding transformers is to visualize their attention. However, attention maps of ViTs are often fragmented, leading to unsatisfactory explanations. Here, we introduce a novel architecture called the B-cos Vision Transformer (BvT) that is designed to be more interpretable. It replaces all linear transformations with the B-cos transform to promote weight-input alignment. In a blinded study, medical experts clearly ranked BvTs above ViTs, suggesting that our network is better at capturing biomedically relevant structures. This is also true for the B-cos Swin Transformer (Bwin). Compared to the Swin Transformer, it even improves the F1-score by up to 4.7% on two public datasets.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Explainability ; Interpretability ; Self-attention ; Transformer
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
ISBN
Bandtitel
Konferenztitel
26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
Konferzenzdatum
Vancouver, CANADA
Konferenzort
8-12 October 2023
Konferenzband
Quellenangaben
Band: 14227 LNCS,
Heft: ,
Seiten: 514-524
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Springer
Verlagsort
Berlin [u.a.]
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530006-001
G-540007-001
G-503800-001
Förderungen
Helmholtz Association under the joint research school "Munich School for Data Science"
Copyright
Erfassungsdatum
2023-11-28