PuSH - Publikationsserver des Helmholtz Zentrums München

Tran, M. ; Lahiani, A.* ; Dicente Cid, Y.* ; Boxberg, M.* ; Lienemann, P. ; Matek, C. ; Wagner, S. ; Theis, F.J. ; Klaiman, E.* ; Peng, T.

B-Cos Aligned Transformers Learn Human-Interpretable Features.

In: (26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Vancouver, CANADA, 8-12 October 2023). Berlin [u.a.]: Springer, 2023. 514-524 (Lect. Notes Comput. Sc. ; 14227 LNCS)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Vision Transformers (ViTs) and Swin Transformers (Swin) are currently state-of-the-art in computational pathology. However, domain experts are still reluctant to use these models due to their lack of interpretability. This is not surprising, as critical decisions need to be transparent and understandable. The most common approach to understanding transformers is to visualize their attention. However, attention maps of ViTs are often fragmented, leading to unsatisfactory explanations. Here, we introduce a novel architecture called the B-cos Vision Transformer (BvT) that is designed to be more interpretable. It replaces all linear transformations with the B-cos transform to promote weight-input alignment. In a blinded study, medical experts clearly ranked BvTs above ViTs, suggesting that our network is better at capturing biomedically relevant structures. This is also true for the B-cos Swin Transformer (Bwin). Compared to the Swin Transformer, it even improves the F1-score by up to 4.7% on two public datasets.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Konferenzbeitrag
Korrespondenzautor
Schlagwörter Explainability ; Interpretability ; Self-attention ; Transformer
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Konferenztitel 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
Konferzenzdatum Vancouver, CANADA
Konferenzort 8-12 October 2023
Quellenangaben Band: 14227 LNCS, Heft: , Seiten: 514-524 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
Nichtpatentliteratur Publikationen
Förderungen Helmholtz Association under the joint research school "Munich School for Data Science"