Dong, Q. ; Xi, Y. ; Brandmaier, S. ; Fuchs, M. ; Huemer, M.-T. ; Waldenberger, M. ; Niu, J. ; Herder, C.* ; Rathmann, W.* ; Roden, M.* ; Koenig, W.* ; Bönhof, G.J.* ; Gieger, C. ; Thorand, B. ; Peters, A. ; Rospleszcz, S. ; Grallert, H.
Subphenotypes of adult-onset diabetes: Data-driven clustering in the population-based KORA cohort.
Diabetes Obes. Metab. 27, 338–347 (2025)
AIMS: A data-driven cluster analysis in a cohort of European individuals with type 2 diabetes (T2D) has previously identified four subgroups based on clinical characteristics. In the current study, we performed a comprehensive statistical assessment to (1) replicate the above-mentioned original clusters; (2) derive de novo T2D subphenotypes in the Kooperative Gesundheitsforschung in der Region Augsburg (KORA) cohort and (3) describe underlying genetic risk and diabetes complications. METHODS: We used data from n = 301 individuals with T2D from KORA FF4 study (Southern Germany). Original cluster replication was assessed forcing k = 4 clusters using three different hyperparameter combinations. De novo clusters were derived by open k-means analysis. Stability of de novo clusters was assessed by assignment congruence over different variable sets and Jaccard indices. Distribution of polygenic risk scores and diabetes complications in the respective clusters were described as an indication of underlying heterogeneity. RESULTS: Original clusters did not replicate well, indicated by substantially different assignment frequencies and cluster characteristics between the original and current sample. De novo clustering using k = 3 clusters and including high sensitivity C-reactive protein in the variable set showed high stability (all Jaccard indices >0.75). The three de novo clusters (n = 96, n = 172, n = 33, respectively) adequately captured heterogeneity within the sample and showed different distributions of polygenic risk scores and diabetes complications, that is, cluster 1 was characterized by insulin resistance with high neuropathy prevalence, cluster 2 was defined as age-related diabetes and cluster 3 showed highest risk of genetic and obesity-related diabetes. CONCLUSION: T2D subphenotyping based on its sample's own clinical characteristics leads to stable categorization and adequately reflects T2D heterogeneity.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Clustering ; Cohort Study ; Database Research ; Diabetes Complications ; Type 2 Diabetes; C-reactive Protein; Insulin; Subgroups; Markers; Risk
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
2024
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
1462-8902
e-ISSN
1463-1326
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 27,
Heft: ,
Seiten: 338–347
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Wiley
Verlagsort
111 River St, Hoboken 07030-5774, Nj Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-504091-002
G-504000-010
G-504090-001
G-504091-001
G-504091-004
G-504000-002
Förderungen
Ministry of Culture and Science of the State North Rhine-Westphalia
German Federal Ministry of Health
State of Bavaria
Helmholtz Munich-German Research Center for Environmental Health
Ludwig-Maximilians-Universitat Munchen
Munich Center of Health Sciences
German Federal Ministry of Education and Research
The German Center for Diabetes Research (DZD)
Copyright
Erfassungsdatum
2024-10-31