Weidner, J.* ; Ezhov, I.* ; Balcerak, M.* ; Metz, M.C.* ; Litvinov, S.* ; Kaltenbach, S.* ; Feiner, L.F.* ; Lux, L.* ; Kofler, F. ; Lipkova, J.* ; Latz, J.* ; Rueckert, D.* ; Menze, B.* ; Wiestler, B.*
A learnable prior improves inverse tumor growth modeling.
IEEE Trans. Med. Imaging 44, 1297-1307 (2024)
Biophysical modeling, particularly involving partial differential equations (PDEs), offers significant potential for tailoring disease treatment protocols to individual patients. However, the inverse problem-solving aspect of these models presents a substantial challenge, either due to the high computational requirements of model-based approaches or the limited robustness of deep learning (DL) methods. We propose a novel framework that leverages the unique strengths of both approaches in a synergistic manner. Our method incorporates a DL ensemble for initial parameter estimation, facilitating efficient downstream evolutionary sampling initialized with this DL-based prior. We showcase the effectiveness of integrating a rapid deep-learning algorithm with a high-precision evolution strategy in estimating brain tumor cell concentrations from magnetic resonance images. The DL-Prior plays a pivotal role, significantly constraining the effective sampling-parameter space. This reduction results in a fivefold convergence acceleration and a Dice-score of 95%.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Cma-es ; Evolutionary Sampling ; Individualized Brain Tumor Modeling ; Inverse Biophysics ; Learnable Prior ; Mri; Glioma Growth; Evolution; Adaptation; Invasion
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0278-0062
e-ISSN
1558-254X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 44,
Heft: 3,
Seiten: 1297-1307
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort
New York, NY [u.a.]
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530001-001
Förderungen
Helmut-Horten-Foundation
NIH
European High Performance Computing Joint Undertaking (EuroHPC)
Deutsche Forschungsgemeinschaft (DFG)
Copyright
Erfassungsdatum
2024-12-02