Nguyen, B.H.P. ; Garger, D. ; Lu, D. ; Maalmi, H.* ; Prokisch, H. ; Thorand, B. ; Adamski, J. ; Kastenmüller, G. ; Waldenberger, M. ; Gieger, C. ; Peters, A. ; Suhre, K.* ; Bönhof, G.J.* ; Rathmann, W.* ; Roden, M.* ; Grallert, H. ; Ziegler, D.* ; Herder, C.* ; Menden, M.P.
Interpretable multimodal machine learning (IMML) framework reveals pathological signatures of distal sensorimotor polyneuropathy.
Commun. Med. 4:265 (2024)
BACKGROUND: Distal sensorimotor polyneuropathy (DSPN) is a common neurological disorder in elderly adults and people with obesity, prediabetes and diabetes and is associated with high morbidity and premature mortality. DSPN is a multifactorial disease and not fully understood yet. METHODS: Here, we developed the Interpretable Multimodal Machine Learning (IMML) framework for predicting DSPN prevalence and incidence based on sparse multimodal data. Exploiting IMMLs interpretability further empowered biomarker identification. We leveraged the population-based KORA F4/FF4 cohort including 1091 participants and their deep multimodal characterisation, i.e. clinical data, genomics, methylomics, transcriptomics, proteomics, inflammatory proteins and metabolomics. RESULTS: Clinical data alone is sufficient to stratify individuals with and without DSPN (AUROC = 0.752), whilst predicting DSPN incidence 6.5 ± 0.2 years later strongly benefits from clinical data complemented with two or more molecular modalities (improved ΔAUROC > 0.1, achieved AUROC of 0.714). Important and interpretable features of incident DSPN prediction include up-regulation of proinflammatory cytokines, down-regulation of SUMOylation pathway and essential fatty acids, thus yielding novel insights in the disease pathophysiology. CONCLUSIONS: These may become biomarkers for incident DSPN, guide prevention strategies and serve as proof of concept for the utility of IMML in studying complex diseases.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Population; Neuropathy; Kora; Inflammation; Integration; Severity; Pathway; Health; Set
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
2730-664X
e-ISSN
2730-664X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 4,
Heft: 1,
Seiten: ,
Artikelnummer: 265
Supplement: ,
Reihe
Verlag
Springer
Verlagsort
Campus, 4 Crinan St, London, N1 9xw, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
90000 - German Center for Diabetes Research
30202 - Environmental Health
30201 - Metabolic Health
30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er)
Enabling and Novel Technologies
Genetics and Epidemiology
PSP-Element(e)
G-554700-001
G-501900-382
G-503292-001
G-504000-002
G-500600-001
G-503891-001
G-504091-001
G-504091-004
G-504000-010
G-504091-002
G-503700-001
Förderungen
German Federal Ministry of Health
Ministry of Culture and Science of the State of North Rhine-Westphalia
Munich Centre of Health Sciences (MC-Health), Ludwig-Maximilians-Universitaet
German Federal Ministry of Education and Research, State of Bavaria
Helmholtz Zentrum Muenchen-German Research Centre for Environmental Health
Copyright
Erfassungsdatum
2024-12-18