PuSH - Publikationsserver des Helmholtz Zentrums München

Gassert, F.G.* ; Lang, D.M. ; Hesse, N.* ; Dürr, H.R.* ; Klein, A.* ; Kohll, L.* ; Hinterwimmer, F.* ; Luitjens, J.* ; Weissinger, S.E.* ; Peeken, J.C. ; Mogler, C.* ; Knebel, C.* ; Bartzsch, S. ; Gassert, F.T.* ; Gersing, A.S.*

A deep learning model for classification of chondroid tumors on CT images.

BMC Cancer 25:561 (2025)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
BACKGROUND: Differentiating chondroid tumors is crucial for proper patient management. This study aimed to develop a deep learning model (DLM) for classifying enchondromas, atypical cartilaginous tumors (ACT), and high-grade chondrosarcomas using CT images. METHODS: This retrospective study analyzed chondroid tumors from two independent cohorts. Tumors were segmented on CT images. A 2D convolutional neural network was developed and tested using split-sample and geographical validation. Four radiologists blinded to patient data and the DLM results with various levels of experience performed readings of the external test dataset for comparison. Performance metrics included accuracy, sensitivity, specificity, and area under the curve (AUC). RESULTS: CTs from 344 patients (175 women; age = 50.3 ± 14.3 years;) with diagnosed enchondroma (n = 124), ACT (n = 92) or high-grade chondrosarcoma (n = 128) were analyzed. The DLM demonstrated comparable performance to radiologists (p > 0.05), achieving an AUC of 0.88 for distinguishing enchondromas from chondrosarcomas and 0.82 for differentiating enchondromas from ACTs. The DLM and musculoskeletal expert showed similar performance in differentiating ACTs from high-grade chondrosarcomas (p = 0.26), with an AUC of 0.64 and 0.56, respectively. CONCLUSIONS: The DLM reliably differentiates benign from malignant cartilaginous tumors and is particularly useful for the differentiation between ACTs and Enchondromas, which is challenging based on CT images only. However, the differentiation between ACTs and high-grade chondrosarcomas remains difficult, reflecting known diagnostic challenges in radiology.
Impact Factor
Scopus SNIP
Altmetric
3.400
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Chondrosarcoma ; Computed Tomography ; Deep Learning ; Enchondroma; Atypical Cartilaginous Tumors; Primary Bone-tumors; Enchondroma; Grade; Chondrosarcoma; Features
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 1471-2407
e-ISSN 1471-2407
Zeitschrift BMC Cancer
Quellenangaben Band: 25, Heft: 1, Seiten: , Artikelnummer: 561 Supplement: ,
Verlag BioMed Central
Verlagsort Campus, 4 Crinan St, London N1 9xw, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Radiation Sciences
PSP-Element(e) G-501300-001
Förderungen Technische Universitt Mnchen (1025)
Scopus ID 105001313543
PubMed ID 40155859
Erfassungsdatum 2025-05-09