PuSH - Publikationsserver des Helmholtz Zentrums München

van der Weg, K.* ; Merdivan, E. ; Piraud, M. ; Gohlke, H.*

TopEC: Prediction of Enzyme Commission classes by 3D graph neural networks and localized 3D protein descriptor.

Nat. Commun. 16:2737 (2025)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Tools available for inferring enzyme function from general sequence, fold, or evolutionary information are generally successful. However, they can lead to misclassification if a deviation in local structural features influences the function. Here, we present TopEC, a 3D graph neural network based on a localized 3D descriptor to learn chemical reactions of enzymes from enzyme structures and predict Enzyme Commission (EC) classes. Using message-passing frameworks, we include distance and angle information to significantly improve the predictive performance for EC classification (F-score: 0.72) compared to regular 2D graph neural networks. We trained networks without fold bias that can classify enzyme structures for a vast functional space (>800 ECs). Our model is robust to uncertainties in binding site locations and similar functions in distinct binding sites. We observe that TopEC networks learn from an interplay between biochemical features and local shape-dependent features. TopEC is available as a repository on GitHub: https://github.com/IBG4-CBCLab/TopEC and https://doi.org/10.25838/d5p-66.
Impact Factor
Scopus SNIP
Altmetric
15.700
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 16, Heft: 1, Seiten: , Artikelnummer: 2737 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Helmholtz AI - FZJ (HAI - FZJ)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530001-001
Scopus ID 105000237820
PubMed ID 40108108
Erfassungsdatum 2025-05-09