Scale-equivariant deep model-based optoacoustic image reconstruction.
Photoacoustics 44:100727 (2025)
Model-based reconstruction provides state-of-the-art image quality for multispectral optoacoustic tomography. However, optimal regularization of in vivo data necessitates scan-specific adjustments of the regularization strength to compensate for fluctuations of the signal magnitudes between different sinograms. Magnitude fluctuations within in vivo data also pose a challenge for supervised deep learning of a model-based reconstruction operator, as training data must cover the complete range of expected signal magnitudes. In this work, we derive a scale-equivariant model-based reconstruction operator that i) automatically adjusts the regularization strength based on the L2 norm of the input sinogram, and ii) facilitates supervised deep learning of the operator using input singorams with a fixed norm. Scale-equivariant model-based reconstruction applies appropriate regularization to sinograms of arbitrary magnitude, achieves slightly better accuracy in quantifying blood oxygen saturation, and enables more accurate supervised deep learning of the operator.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Model-based Reconstruction ; Optoacoustic Imaging ; Regularization ; Scale-equivariance; Response Characterization Method
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
2213-5979
e-ISSN
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 44,
Heft: ,
Seiten: ,
Artikelnummer: 100727
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Hackerbrucke 6, 80335 Munich, Germany
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505500-001
G-503800-001
Förderungen
Bavarian Ministry of Economic Affairs, Energy and Technology (StMWi)
Copyright
Erfassungsdatum
2025-05-27