Bauer, C.J.* ; Chrysidis, S.* ; Dejaco, C.* ; Koster, M.J.* ; Kohler, M.J.* ; Monti, S.M.* ; Schmidt, W.A.* ; Mukhtyar, C.B.* ; Karakostas, P.* ; Milchert, M.* ; Ponte, C.* ; Duftner, C.* ; de Miguel, E.* ; Hocevar, A.* ; Iagnocco, A.* ; Terslev, L.* ; Døhn, U.M.* ; Nielsen, B.D.* ; Juche, A.* ; Seitz, L.* ; Keller, K.K.* ; Karalilova, R.* ; Daikeler, T.* ; Mackie, S.L.* ; Torralba, K.* ; van der Geest, K.S.M.* ; Boumans, D.* ; Bosch, P.* ; Tomelleri, A.* ; Aschwanden, M.* ; Kermani, T.A.* ; Diamantopoulos, A.* ; Fredberg, U.* ; Inanc, N.* ; Petzinna, S.M.* ; Albarqouni, S. ; Behning, C.* ; Schäfer, V.S.*
     
 
    
        
Exploring the limit of image resolution for human expert classification of vascular ultrasound images in giant cell arteritis and healthy subjects: The GCA-US-AI project.
    
    
        
    
    
        
        Ann. Rheum. Dis. 84:10 (2025)
    
    
    
		
		
			
				OBJECTIVES: Prompt diagnosis of giant cell arteritis (GCA) with ultrasound is crucial for preventing severe ocular and other complications, yet expertise in ultrasound performance is scarce. The development of an artificial intelligence (AI)-based assistant that facilitates ultrasound image classification and helps to diagnose GCA early promises to close the existing gap. In the projection of the planned AI, this study investigates the minimum image resolution required for human experts to reliably classify ultrasound images of arteries commonly affected by GCA for the presence or absence of GCA. METHODS: Thirty-one international experts in GCA ultrasonography participated in a web-based exercise. They were asked to classify 10 ultrasound images for each of 5 vascular segments as GCA, normal, or not able to classify. The following segments were assessed: (1) superficial common temporal artery, (2) its frontal and (3) parietal branches (all in transverse view), (4) axillary artery in transverse view, and 5) axillary artery in longitudinal view. Identical images were shown at different resolutions, namely 32 × 32, 64 × 64, 128 × 128, 224 × 224, and 512 × 512 pixels, thereby resulting in a total of 250 images to be classified by every study participant. RESULTS: Classification performance improved with increasing resolution up to a threshold, plateauing at 224 × 224 pixels. At 224 × 224 pixels, the overall classification sensitivity was 0.767 (95% CI, 0.737-0.796), and specificity was 0.862 (95% CI, 0.831-0.888). CONCLUSIONS: A resolution of 224 × 224 pixels ensures reliable human expert classification and aligns with the input requirements of many common AI-based architectures. Thus, the results of this study substantially guide projected AI development.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Denmark; Diagnosis; Cancer
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2025
    
 
    
        Prepublished im Jahr 
        0
    
 
    
        HGF-Berichtsjahr
        2025
    
 
    
    
        ISSN (print) / ISBN
        0003-4967
    
 
    
        e-ISSN
        1468-2060
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 84,  
	    Heft: 9,  
	    Seiten: ,  
	    Artikelnummer: 10 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            BMJ Publishing Group
        
 
        
            Verlagsort
            Radarweg 29, 1043 Nx Amsterdam, Netherlands
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-530005-001
    
 
    
        Förderungen
        NIHR Leeds Biomedical Research Centre
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2025-07-08