de la Rosa, E.* ; Reyes, M.* ; Liew, S.L.* ; Hutton, A.* ; Wiest, R.* ; Kaesmacher, J.* ; Hanning, U.* ; Hakim, A.J.* ; Zubal, R.* ; Valenzuela, W.* ; Robben, D.* ; Sima, D.M.* ; Anania, V.* ; Brys, A.* ; Meakin, J.A.* ; Mickan, A.* ; Broocks, G.* ; Heitkamp, C.* ; Gao, S.* ; Liang, K.W.* ; Zhang, Z.* ; Rahman Siddiquee, M.M.* ; Myronenko, A.* ; Ashtari, P.* ; Van Huffel, S.* ; Jeong, H.* ; Yoon, C.* ; Kim, C.* ; Huo, J.* ; Ourselin, S.* ; Sparks, R.* ; Clèrigues, A.* ; Oliver, A.J.* ; Lladó, X.* ; Chalcroft, L.* ; Pappas, I.* ; Bertels, J.* ; Heylen, E.* ; Moreau, J.* ; Hatami, N.* ; Frindel, C.* ; Qayyum, A.* ; Mazher, M.* ; Puig, D.* ; Lin, S.C.* ; Juan, C.J.* ; Hu, T.* ; Boone, L.* ; Goubran, M.* ; Liu, Y.J.* ; Wegener, S.* ; Kofler, F. ; Ezhov, I.* ; Shit, S.* ; Hernandez Petzsche, M.R.* ; Müller, M.* ; Menze, B.* ; Kirschke, J.S.* ; Wiestler, B.*
DeepISLES: A clinically validated ischemic stroke segmentation model from the ISLES'22 challenge.
Nat. Commun. 16:7357 (2025)
Diffusion-weighted MRI is critical for diagnosing and managing ischemic stroke, but variability in images and disease presentation limits the generalizability of AI algorithms. We present DeepISLES, a robust ensemble algorithm developed from top submissions to the 2022 Ischemic Stroke Lesion Segmentation challenge we organized. By combining the strengths of best-performing methods from leading research groups, DeepISLES achieves superior accuracy in detecting and segmenting ischemic lesions, generalizing well across diverse axes. Validation on a large external dataset (N = 1685) confirms its robustness, outperforming previous state-of-the-art models by 7.4% in Dice score and 12.6% in F1 score. It also excels at extracting clinical biomarkers and correlates strongly with clinical stroke scores, closely matching expert performance. Neuroradiologists prefer DeepISLES' segmentations over manual annotations in a Turing-like test. Our work demonstrates DeepISLES' clinical relevance and highlights the value of biomedical challenges in developing real-world, generalizable AI tools. DeepISLES is freely available at https://github.com/ezequieldlrosa/DeepIsles .
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Lesion Segmentation; Computed-tomography; Benchmark; Association; Images; Core
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
2041-1723
e-ISSN
2041-1723
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 16,
Heft: 1,
Seiten: ,
Artikelnummer: 7357
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530001-001
Förderungen
Korea Evaluation Institute of Industrial Technology (KEIT) - Korea government (MOTIE)
Artificial Intelligence Graduate School Program (POSTECH)
Institute of Information & communications Technology Planning & Evaluation (IITP) - Korea government (MSIT)
Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education
Swiss Heart Foundation
Swiss National Science Foundation
National Institutes of Health, National Institutes of Neurological Disorders and Stroke (NIH NINDS)
Flemish Government (AI Research Program)
Helmut Horten Foundation
Copyright
Erfassungsdatum
2025-10-10