PuSH - Publikationsserver des Helmholtz Zentrums München

Wei, Y.* ; Peng, B.* ; Xie, R.* ; Chen, Y. ; Qin, Y.* ; Wen, P.Y.* ; Bauer, S. ; Tung, P.Y.* ; Raabe, D.*

Deep active optimization for complex systems.

Nat. Comput. Sci. 5, 801–812 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Inferring optimal solutions from limited data is considered the ultimate goal in scientific discovery. Artificial intelligence offers a promising avenue to greatly accelerate this process. Existing methods often depend on large datasets, strong assumptions about objective functions, and classic machine learning techniques, restricting their effectiveness to low-dimensional or data-rich problems. Here we introduce an optimization pipeline that can effectively tackle complex, high-dimensional problems with limited data. This approach utilizes a deep neural surrogate to iteratively find optimal solutions and introduces additional mechanisms to avoid local optima, thereby minimizing the required samples. Our method finds superior solutions in problems with up to 2,000 dimensions, whereas existing approaches are confined to 100 dimensions and need considerably more data. It excels across varied real-world systems, outperforming current algorithms and enabling efficient knowledge discovery. Although focused on scientific problems, its benefits extend to numerous quantitative fields, paving the way for advanced self-driving laboratories.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Design; Loop; Go
ISSN (print) / ISBN 2662-8457
e-ISSN 2662-8457
Quellenangaben Band: 5, Heft: , Seiten: 801–812 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Campus, 4 Crinan St, London, N1 9xw, England
Begutachtungsstatus Peer reviewed
Förderungen Gemeinsame Wissenschafts Konferenz
Federal Ministry of Education and Research
Beijing Natural Science Foundation
CityUHK start-up fund
National Natural Science Foundation of China
Tsinghua-Toyota Joint Research Fund
City Universtiy of Hong Kong (9382006)