Investigating the performance of foundation models on human 3'UTR sequences.
Nucleic Acids Res. 53:gkaf871 (2025)
Foundation models, such as DNABERT and Nucleotide Transformer, have recently shaped a new direction in DNA research. Trained in an unsupervised manner on a vast quantity of genomic data, they can be used for a variety of downstream tasks, such as promoter prediction, DNA methylation prediction, gene network prediction, or functional variant prioritization. However, these models are often trained and evaluated on entire genomes, neglecting genome partitioning into different functional regions. In our study, we investigate the efficacy of various unsupervised approaches, including genome-wide and 3' untranslated region (3'UTR)-specific foundation models on human 3'UTR regions. To this end, we train a set of popular transformer architectures on a 3'UTR-specific dataset comprising 3 783 714 3'UTR sequences (6.6B bp) of 241 Zoonomia species. Our evaluation includes downstream tasks specific for RNA biology, such as recognition of binding motifs of RNA-binding proteins, detection of functional genetic variants, prediction of expression levels in massively parallel reporter assays, and estimation of messenger RNA half-life. Remarkably, models specifically trained on 3'UTR sequences demonstrate superior performance when compared to established genome-wide foundation models in three out of four downstream tasks. Our results underscore the importance of considering genome partitioning into distinct functional regions when training and evaluating foundation models. In addition, the proposed set of 3'UTR-specific tasks can be used for benchmarking of future models.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0305-1048
e-ISSN
1362-4962
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 53,
Heft: 17,
Seiten: ,
Artikelnummer: gkaf871
Supplement: ,
Reihe
Verlag
Oxford University Press
Verlagsort
Great Clarendon St, Oxford Ox2 6dp, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-553500-001
Förderungen
Deutsche Forschungsgemeinschaft
Copyright
Erfassungsdatum
2025-10-21