Fire blight is a bacterial plant disease that affects apple and pear trees. We present a mathematical model for its spread in an orchard during bloom. This is a PDE-ODE coupled system, consisting of two semilinear PDEs for the pathogen, coupled to a system of three ODEs for the stationary hosts. Exploratory numerical simulations suggest the existence of travelling waves, which we subsequently prove, under some conditions on parameters, using the method of upper and lower bounds and Schauder's fixed point theorem. Our results are likely not optimal in the sense that our constraints on parameters, which can be interpreted biologically, are sufficient for the existence of travelling waves, but probably not necessary. Possible implications for fire blight biology and management are discussed.
Impact Factor
Scopus SNIP
Web of Science Times Cited
Scopus Cited By
Altmetric
0.000
0.000
0
0
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
PublikationstypArtikel: Journalartikel
DokumenttypReview
Typ der Hochschulschrift
Herausgeber
SchlagwörterErwinia Amylovora ; Fire Blight ; Mathematical Model ; Pde-ode Coupled System ; Travelling Waves