Kreyling, W.G. ; Holzwarth, U.* ; Schleh, C. ; Kozempel, J.* ; Wenk, A. ; Haberl, N. ; Hirn, S. ; Schäffler, M. ; Lipka, J. ; Semmler-Behnke, M. ; Gibson, N.*
Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats (Part 2).
Nanotox. 11, 443-453 (2017)
The biokinetics of a size-selected fraction (70nm median size) of commercially available and (48)V-radiolabeled [(48)V]TiO2 nanoparticles has been investigated in female Wistar-Kyoto rats at retention timepoints 1h, 4h, 24h and 7days after oral application of a single dose of an aqueous [(48)V]TiO2-nanoparticle suspension by intra-esophageal instillation. A completely balanced quantitative body clearance and biokinetics in all organs and tissues was obtained by applying typical [(48)V]TiO2-nanoparticle doses in the range of 30-80 μg•kg(-1) bodyweight, making use of the high sensitivity of the radiotracer technique. The [(48)V]TiO2-nanoparticle content was corrected for nanoparticles in the residual blood retained in organs and tissue after exsanguination and for (48)V-ions not bound to TiO2-nanoparticles. Beyond predominant fecal excretion about 0.6% of the administered dose passed the gastro-intestinal-barrier after -h and about 0.05% were still distributed in the body at day-7, with quantifiable [(48)V]TiO2-nanoparticle organ concentrations present in liver (0.09ng•g(-1)), lungs (0.10ng•g(-1)), kidneys (0.29ng•g(-1)), brain (0.36ng•g(-1)), spleen (0.45ng•g(-1)), uterus (0.55ng•g(-1)) and skeleton (0.98ng•g(-1)). Since chronic, oral uptake of TiO2 particles (including a nano-fraction) by consumers has continuously increased in the past decades, the possibility of chronic accumulation of such biopersistent nanoparticles in secondary organs and the skeleton raises questions about the responsiveness of their defense capacities, and whether these could be leading to adverse health effects in the population at large. After normalizing the fractions of retained [(48)V]TiO2-nanoparticles to the fraction that passed the gastro-intestinal-barrier and reached systemic circulation the biokinetics was compared to the biokinetics determined after IV-injection (Part 1). Since the biokinetics patterns differ largely IV-injection is not an adequate surrogate for assessing the biokinetics after oral exposure to TiO2 nanoparticles.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Size-selected ; Accumulation In Secondary Organs And Tissues ; Different Biokinetics Pattern After Gavage Versus Intravenous Injection ; Gavage ; Gut-absorption ; Radiolabeled Titanium Dioxide Nanoparticles; Smooth-muscle-cells; Gold Nanoparticles; Inorganic Microparticles; Cellular Uptake; Particles; Translocation; Mechanisms; Products; Exposure; Disease
Keywords plus
Language
english
Publication Year
2017
Prepublished in Year
HGF-reported in Year
2017
ISSN (print) / ISBN
1743-5390
e-ISSN
1743-5404
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 11,
Issue: 4,
Pages: 443-453
Article Number: ,
Supplement: ,
Series
Publisher
Informa Healthcare
Publishing Place
London
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Genetics and Epidemiology
Lung Research
PSP Element(s)
G-504000-001
G-505000-001
Grants
Copyright
Erfassungsdatum
2017-06-12