PuSH - Publication Server of Helmholtz Zentrum München

Wilke, C. ; Braselmann, H. ; Hess J. ; Klymenko, S.V.* ; Chumak, V.V.* ; Zakhartseva, L.M.* ; Bakhanova, E.V.* ; Walch, A.K. ; Selmansberger, M. ; Samaga, D. ; Weber, P. ; Schneider, L. ; Fend, F.* ; Bösmüller, H.C.* ; Zitzelsberger, H. ; Unger, K.

A genomic copy number signature predicts radiation exposure in post-Chernobyl breast cancer.

Int. J. Cancer 143, 1505-1515 (2018)
Publ. Version/Full Text Postprint DOI PMC
Open Access Green
Breast cancer is the second leading cause of cancer death among women worldwide and besides life style, age and genetic risk factors, exposure to ionizing radiation is known to increase the risk for breast cancer. Further, DNA copy number alterations (CNAs), which can result from radiation-induced double-strand breaks, are frequently occurring in breast cancer cells. We set out to identify a signature of CNAs discriminating breast cancers from radiation-exposed and non-exposed female patients. We analyzed resected breast cancer tissues from 68 exposed female Chernobyl clean-up workers and evacuees and 68 matched non-exposed control patients for CNAs by array comparative genomic hybridization analysis (aCGH). Using a stepwise forward-backward selection approach a non-complex CNA signature, that is, less than ten features, was identified in the training data set, which could be subsequently validated in the validation data set (p value <0.05). The signature consisted of nine copy number regions located on chromosomal bands 7q11.22-11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23-11.21, 1p21.1, 2q35, 2q35, 6p22.2. The signature was independent of any clinical characteristics of the patients. In all, we identified a CNA signature that has the potential to allow identification of radiation-associated breast cancer at the individual level.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Copy Number Signature ; Chernobyl ; Breast Cancer ; Ionizing Radiation; Atomic-bomb Survivors; Molecular Portraits; Hybridization; Expression; Subtypes; Risk; Head
ISSN (print) / ISBN 0020-7136
e-ISSN 1097-0215
Quellenangaben Volume: 143, Issue: 6, Pages: 1505-1515 Article Number: , Supplement: ,
Publisher Wiley
Publishing Place 111 River St, Hoboken 07030-5774, Nj Usa
Non-patent literature Publications
Reviewing status Peer reviewed
Institute(s) Translational Metabolic Oncology (TMO)
Research Unit Analytical Pathology (AAP)
CCG Personalized Radiotherapy in Head and Neck Cancer (KKG-KRT)