PuSH - Publication Server of Helmholtz Zentrum München

Fischer, C.A, ; Besora-Casals, L.* ; Rolland, S.G.* ; Haeussler, S.* ; Singh, K.* ; Duchen, M.* ; Conradt, B.* ; Marr, C.

MitoSegNet: Easy-to-use deep learning segmentation for analyzing mitochondrial morphology.

iScience 23:101601 (2020)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a pretrained deep learning segmentation model that enables researchers to easily exploit the power of deep learning for the quantification of mitochondrial morphology. We tested the performance of MitoSegNet against three feature-based segmentation algorithms and the machine-learning segmentation tool Ilastik. MitoSegNet outperformed all other methods in both pixelwise and morphological segmentation accuracy. We successfully applied MitoSegNet to unseen fluorescence microscopy images of mitoGFP expressing mitochondria in wild-type and catp-6ATP13A2 mutant C. elegans adults. Additionally, MitoSegNet was capable of accurately segmenting mitochondria in HeLa cells treated with fragmentation inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux operating systems that combines segmentation with morphological analysis.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Artificial Intelligence ; Automation In Bioinformatics ; Bioinformatics ; Cell Biology; Image; Atp13a2; Parkinsonism; Mutations; Dynamics
ISSN (print) / ISBN 2589-0042
e-ISSN 2589-0042
Journal iScience
Quellenangaben Volume: 23, Issue: 10, Pages: , Article Number: 101601 Supplement: ,
Publisher Elsevier
Publishing Place Amsterdam ; Bosten ; London ; New York ; Oxford ; Paris ; Philadelphia ; San Diego ; St. Louis
Non-patent literature Publications
Reviewing status Peer reviewed
Grants NIH HHS