Investigations into the efficiency of computer-aided synthesis planning.
    
    
        
    
    
        
        J. Chem. Inf. Model. 65, 1771-1781 (2025)
    
    
    
      
      
	
	    The efficiency of machine learning (ML) models is crucial to minimize inference times and reduce the carbon footprints of models deployed in production environments. Current models employed in retrosynthesis to generate a synthesis route from a target molecule to purchasable compounds are prohibitively slow. The model operates in a single-step fashion in a tree search algorithm by predicting reactant molecules given a product molecule as input. In this study, we investigate the ability of alternative transformer architectures, knowledge distillation (KD), and simple hyper-parameter optimization to decrease inference times of the Chemformer model. Initially, we assess the ability of closely related transformer architectures and conclude that these models under-performed when using KD. Additionally, we investigate the effects of feature-based and response-based KD together with hyper-parameters optimized based on inference sample time and model accuracy. We find that although reducing model size and improving single-step speed are important, our results indicate that multi-step search efficiency is more significantly influenced by the diversity and confidence of single-step models. Based on this work, further research should use KD in combination with other techniques, as multi-step speed continues to prevent proper integration of synthesis planning. However, in Monte Carlo-based (MC) multi-step retrosynthesis, other factors play a crucial role in balancing exploration and exploitation during the search process, often outweighing the direct impact of single-step model speed and carbon footprints.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Transformer
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2025
    
 
    
        Prepublished in Year
        0
    
 
    
        HGF-reported in Year
        2025
    
 
    
    
        ISSN (print) / ISBN
        0021-9576
    
 
    
        e-ISSN
        1520-5142
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 65,  
	    Issue: 4,  
	    Pages: 1771-1781 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            American Chemical Society (ACS)
        
 
        
            Publishing Place
            1155 16th St, Nw, Washington, Dc 20036 Usa
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30203 - Molecular Targets and Therapies
    
 
    
        Research field(s)
        Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-503093-001
G-503000-001
    
 
    
        Grants
        European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Actions Innovative Training Network European Industrial Doctorate grant agreement "Advanced machine learning for Innovative Drug Discovery (AIDD)"
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2025-03-26