PuSH - Publication Server of Helmholtz Zentrum München

Tran, M. ; Schmidle, P.* ; Guo, R.R.* ; Wagner, S. ; Koch, V. ; Lupperger, V.* ; Novotny, B.* ; Murphree, D.H.* ; Hardway, H.D.* ; D'Amato, M.* ; Lefkes, J.* ; Geijs, D.J.* ; Feuchtinger, A. ; Böhner, A.* ; Kaczmarczyk, R.* ; Biedermann, T.* ; Amir, A.L.* ; Mooyaart, A.L.* ; Ciompi, F.* ; Litjens, G.* ; Wang, C.* ; Comfere, N.I.* ; Eyerich, K.* ; Braun, S.A.* ; Marr, C. ; Peng, T.

Generating dermatopathology reports from gigapixel whole slide images with HistoGPT.

Nat. Commun. 16:4886 (2025)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Histopathology is the reference standard for diagnosing the presence and nature of many diseases, including cancer. However, analyzing tissue samples under a microscope and summarizing the findings in a comprehensive pathology report is time-consuming, labor-intensive, and non-standardized. To address this problem, we present HistoGPT, a vision language model that generates pathology reports from a patient's multiple full-resolution histology images. It is trained on 15,129 whole slide images from 6705 dermatology patients with corresponding pathology reports. The generated reports match the quality of human-written reports for common and homogeneous malignancies, as confirmed by natural language processing metrics and domain expert analysis. We evaluate HistoGPT in an international, multi-center clinical study and show that it can accurately predict tumor subtypes, tumor thickness, and tumor margins in a zero-shot fashion. Our model demonstrates the potential of artificial intelligence to assist pathologists in evaluating, reporting, and understanding routine dermatopathology cases.
Impact Factor
Scopus SNIP
Altmetric
15.700
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Foundation Model
Language english
Publication Year 2025
HGF-reported in Year 2025
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Quellenangaben Volume: 16, Issue: 1, Pages: , Article Number: 4886 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
Institute(s) Helmholtz Artifical Intelligence Cooperation Unit (HAICU)
Institute of AI for Health (AIH)
CF Pathology & Tissue Analytics (CF-PTA)
POF-Topic(s) 30205 - Bioengineering and Digital Health
30202 - Environmental Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-530006-001
G-540007-001
A-630600-001
Grants Hightech Agenda Bayern
European Research Council (ERC)
Helmholtz Association under the joint research school "Munich School for Data Science-MUDS
Scopus ID 105006577955
PubMed ID 40419470
Erfassungsdatum 2025-05-28