Genetic manipulation of mammalian cells in microphysiological hydrogels.
    
    
        
    
    
        
        Adv. Sci., DOI: 10.1002/advs.202505474:e05474 (2025)
    
    
    
      
      
	
	    Engineering functional 3D tissue constructs is essential for developing advanced organ-like systems, with applications ranging from fundamental biological research to drug testing. The generation of complex multicellular structures requires the integration of external geometric and mechanical cues with the ability to activate genetic programs that regulate and stimulate cellular self-organization. Here, it is demonstrated that gelatin methacryloyl (GelMA) hydrogels serve as effective matrices for 3D cell culture, supporting both in situ genetic manipulation and cell growth. HEK293T cells embedded in GelMA remained viable and proliferated over 16 days, forming clusters within the matrix. Efficient gene delivery is achieved in the 3D hydrogel environment using both plasmid DNA and mRNA as gene vectors. Furthermore, in situ prime editing is applied to induce permanent genetic modifications in embedded cells. To achieve spatially confined gene expression, gel-embedded channels are introduced that allowed localized stimulation via doxycycline perfusion through a Tet-On system. These findings demonstrate the feasibility of integrating gene delivery, inducible expression, and spatial control within GelMA-based hydrogels, establishing a versatile framework for engineered 3D cell systems with programmable genetic activity.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        3d Cell Culture ; Genome Editing ; Hydrogels ; Tissue Engineering ; Transfection ; Vascular Channels; Thick; Tetracyclines; Transfection
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2025
    
 
    
        Prepublished in Year
        0
    
 
    
        HGF-reported in Year
        2025
    
 
    
    
        ISSN (print) / ISBN
        2198-3844
    
 
    
        e-ISSN
        2198-3844
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: ,  
	    Issue: ,  
	    Pages: ,  
	    Article Number: e05474 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Wiley
        
 
        
            Publishing Place
            Weinheim
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
    
        Institute(s)
        Insitute of Synthetic Biomedicine (ISBM)
    
 
    
        POF-Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Research field(s)
        Enabling and Novel Technologies
    
 
    
        PSP Element(s)
        G-509300-001
    
 
    
        Grants
        Bayrisches Staatsministerium für Forschung und Kunst : ONE MUNICH Multiscale Biofabrication
Federal Ministry of Education and Research
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2025-07-18