PuSH - Publikationsserver des Helmholtz Zentrums München

Petri, T.* ; Altmann, S.* ; Geistlinger, L.* ; Zimmer, R.* ; Küffner, R.

Addressing false discoveries in network inference.

Bioinformatics 31, 2836-2843 (2015)
Verlagsversion Anhang DOI
Open Access Gold
Motivation: Experimentally determined gene regulatory networks can be enriched by computational inference from high-throughput expression profiles. However, the prediction of regulatory interactions is severely impaired by indirect and spurious effects, particularly for eukaryotes. Recently, published methods report improved predictions by exploiting the a priori known targets of a regulator (its local topology) in addition to expression profiles. Results: We find that methods exploiting known targets show an unexpectedly high rate of false discoveries. This leads to inflated performance estimates and the prediction of an excessive number of new interactions for regulators with many known targets. These issues are hidden from common evaluation and cross-validation setups, which is due to Simpson's paradox. We suggest a confidence score recalibration method (CoRe) that reduces the false discovery rate and enables a reliable performance estimation. Conclusions: CoRe considerably improves the results of network inference methods that exploit known targets. Predictions then display the biological process specificity of regulators more correctly and enable the inference of accurate genome-wide regulatory networks in eukaryotes. For yeast, we propose a network with more than 22∈000 confident interactions. We point out that machine learning approaches outside of the area of network inference may be affected as well.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.981
1.843
7
8
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2015
HGF-Berichtsjahr 2015
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 31, Heft: 17, Seiten: 2836-2843 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503700-001
Scopus ID 84940733875
Erfassungsdatum 2015-09-14