PuSH - Publikationsserver des Helmholtz Zentrums München

Rahmani, E.* ; Shenhav, L.* ; Schweiger, R.* ; Yousefi, P.* ; Huen, K.* ; Eskenazi, B.* ; Eng, C.* ; Huntsman, S.* ; Hu, D.* ; Galanter, J.* ; Oh, S.S.* ; Waldenberger, M. ; Strauch, K. ; Grallert, H. ; Meitinger, T. ; Gieger, C. ; Holland, N.* ; Burchard, E.G.* ; Zaitlen, N.* ; Halperin, E.*

Genome-wide methylation data mirror ancestry information.

Epigenetics Chromatin 10:1 (2017)
Verlagsversion Postprint Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Background: Genetic data are known to harbor information about human demographics, and genotyping data are commonly used for capturing ancestry information by leveraging genome-wide differences between populations. In contrast, it is not clear to what extent population structure is captured by whole-genome DNA methylation data. Results: We demonstrate, using three large-cohort 450K methylation array data sets, that ancestry information signal is mirrored in genome-wide DNA methylation data and that it can be further isolated more effectively by leveraging the correlation structure of CpGs with cis-located SNPs. Based on these insights, we propose a method, EPISTRUCTURE, for the inference of ancestry from methylation data, without the need for genotype data. Conclusions: EPISTRUCTURE can be used to infer ancestry information of individuals based on their methylation data in the absence of corresponding genetic data. Although genetic data are often collected in epigenetic studies of large cohorts, these are typically not made publicly available, making the application of EPISTRUCTURE especially useful for anyone working on public data. Implementation of EPISTRUCTURE is available in GLINT, our recently released toolset for DNA methylation analysis at: http://glint-epigenetics.readthedocs.io.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
5.189
1.054
34
45
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Ancestry ; Dna Methylation ; Epigenetics ; Epigenome-wide Association Study (ewas) ; Illumina 450k ; Population Structure; Dna Methylation; Genetic Ancestry; Breast-cancer; Cell-types; Association; Populations; Asthma; Risk; Stratification; Loci
Sprache englisch
Veröffentlichungsjahr 2017
Prepublished im Jahr 2016
HGF-Berichtsjahr 2016
e-ISSN 1756-8935
Quellenangaben Band: 10, Heft: , Seiten: , Artikelnummer: 1 Supplement: ,
Verlag BioMed Central
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504091-001
G-504091-002
G-504091-004
G-504100-001
G-500700-001
PubMed ID 28149326
Scopus ID 85010825671
Erfassungsdatum 2016-12-31