PuSH - Publikationsserver des Helmholtz Zentrums München

pyABC: Distributed, likelihood-free inference.

Bioinformatics 34, 3591-3593 (2018)
Verlagsversion Postprint Forschungsdaten DOI PMC
Open Access Gold
Likelihood-free methods are often required for inference in systems biology. While approximate Bayesian computation (ABC) provides a theoretical solution, its practical application has often been challenging due to its high computational demands. To scale likelihood-free inference to computationally demanding stochastic models, we developed pyABC: a distributed and scalable ABC-Sequential Monte Carlo (ABC-SMC) framework. It implements a scalable, runtime-minimizing parallelization strategy for multi-core and distributed environments scaling to thousands of cores. The framework is accessible to non-expert users and also enables advanced users to experiment with and to custom implement many options of ABC-SMC schemes, such as acceptance threshold schedules, transition kernels and distance functions without alteration of pyABC's source code. pyABC includes a web interface to visualize ongoing and finished ABC-SMC runs and exposes an API for data querying and post-processing.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
5.481
2.520
28
32
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Approximate Bayesian Computation; Sequential Monte-carlo; Parameter-estimation; Dynamical-systems
Sprache englisch
Veröffentlichungsjahr 2018
HGF-Berichtsjahr 2018
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 34, Heft: 20, Seiten: 3591-3593 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-553800-001
Scopus ID 85054887835
PubMed ID 29762723
Erfassungsdatum 2018-06-26