PuSH - Publikationsserver des Helmholtz Zentrums München

HitPickV2: A web server to predict targets of chemical compounds.

Bioinformatics 35, 1239-1240 (2019)
Verlagsversion Postprint Forschungsdaten DOI PMC
Open Access Gold
Motivation The identification of protein targets of novel compounds is essential to understand compounds' mechanisms of action leading to biological effects. Experimental methods to determine these protein targets are usually slow, costly and time consuming. Computational tools have recently emerged as cheaper and faster alternatives that allow the prediction of targets for a large number of compounds.Results Here, we present HitPickV2, a novel ligand-based approach for the prediction of human druggable protein targets of multiple compounds. For each query compound, HitPickV2 predicts up to 10 targets out of 2739 human druggable proteins. To that aim, HitPickV2 identifies the closest, structurally similar compounds in a restricted space within a vast chemical-protein interaction area, until 10 distinct protein targets are found. Then, HitPickV2 scores these 10 targets based on three parameters of the targets in such space: the Tanimoto coefficient (Tc) between the query and the most similar compound interacting with the target, a target rank that considers Tc and Laplacian-modified naive Bayesian target models scores and a novel parameter introduced in HitPickV2, the number of compounds interacting with each target (occur). We present the performance results of HitPickV2 in cross-validation as well as in an external dataset.Availability and implementation HitPickV2 is available in www.hitpickv2.com.Supplementary informationSupplementary data are available at Bioinformatics online.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.531
1.869
13
20
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2019
Prepublished im Jahr 2018
HGF-Berichtsjahr 2018
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 35, Heft: 7, Seiten: 1239-1240 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-551700-002
G-503700-001
Scopus ID 85064114646
PubMed ID 30169615
Erfassungsdatum 2018-09-19