PuSH - Publikationsserver des Helmholtz Zentrums München

Sosnin, S.* ; Karlov, D.* ; Tetko, I.V. ; Fedorov, M.V.*

Comparative study of multitask toxicity modeling on a broad chemical space.

J. Chem. Inf. Model. 59, 1062-1072 (2019)
Verlagsversion Postprint Forschungsdaten DOI PMC
Open Access Green
Acute toxicity is one of the most challenging properties to predict purely with computational methods due to its direct relationship to biological interactions. Moreover, toxicity can be represented by different end points: it can be measured for different species using different types of administration, etc., and it is questionable if the knowledge transfer between end points is possible. We performed a comparative study of prediction multitask toxicity for a broad chemical space using different descriptors and modeling algorithms and applied multitask learning for a large toxicity data set extracted from the Registry of Toxic Effects of Chemical Substances (RTECS). We demonstrated that multitask modeling provides significant improvement over single-output models and other machine learning methods. Our research reveals that multitask learning can be very useful to improve the quality of acute toxicity modeling and raises a discussion about the usage of multitask approaches for regulation purposes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.966
1.163
26
42
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Neural-networks; Web Server; Qsar; Prediction; Classification; Descriptors
Sprache englisch
Veröffentlichungsjahr 2019
Prepublished im Jahr 2018
HGF-Berichtsjahr 2018
ISSN (print) / ISBN 0021-9576
e-ISSN 1520-5142
Quellenangaben Band: 59, Heft: 3, Seiten: 1062-1072 Artikelnummer: , Supplement: ,
Verlag American Chemical Society (ACS)
Verlagsort 1155 16th St, Nw, Washington, Dc 20036 Usa
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503000-001
Scopus ID 85063395180
PubMed ID 30589269
Erfassungsdatum 2019-01-30