Sosnin, S.* ; Karlov, D.* ; Tetko, I.V. ; Fedorov, M.V.*
     
 
    
        
Comparative study of multitask toxicity modeling on a broad chemical space.
    
    
        
    
    
        
        J. Chem. Inf. Model. 59, 1062-1072 (2019)
    
    
    
		
		
			
				Acute toxicity is one of the most challenging properties to predict purely with computational methods due to its direct relationship to biological interactions. Moreover, toxicity can be represented by different end points: it can be measured for different species using different types of administration, etc., and it is questionable if the knowledge transfer between end points is possible. We performed a comparative study of prediction multitask toxicity for a broad chemical space using different descriptors and modeling algorithms and applied multitask learning for a large toxicity data set extracted from the Registry of Toxic Effects of Chemical Substances (RTECS). We demonstrated that multitask modeling provides significant improvement over single-output models and other machine learning methods. Our research reveals that multitask learning can be very useful to improve the quality of acute toxicity modeling and raises a discussion about the usage of multitask approaches for regulation purposes.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Neural-networks; Web Server; Qsar; Prediction; Classification; Descriptors
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2019
    
 
    
        Prepublished im Jahr 
        2018
    
 
    
        HGF-Berichtsjahr
        2018
    
 
    
    
        ISSN (print) / ISBN
        0021-9576
    
 
    
        e-ISSN
        1520-5142
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 59,  
	    Heft: 3,  
	    Seiten: 1062-1072 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            American Chemical Society (ACS)
        
 
        
            Verlagsort
            1155 16th St, Nw, Washington, Dc 20036 Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30203 - Molecular Targets and Therapies
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-503000-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2019-01-30