State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis.
Nat. Commun. 11:5575 (2020)
We investigated the effect of different training scenarios on predicting the (retro)synthesis of chemical compounds using text-like representation of chemical reactions (SMILES) and Natural Language Processing (NLP) neural network Transformer architecture. We showed that data augmentation, which is a powerful method used in image processing, eliminated the effect of data memorization by neural networks and improved their performance for prediction of new sequences. This effect was observed when augmentation was used simultaneously for input and the target data simultaneously. The top-5 accuracy was 84.8% for the prediction of the largest fragment (thus identifying principal transformation for classical retro-synthesis) for the USPTO-50k test dataset, and was achieved by a combination of SMILES augmentation and a beam search algorithm. The same approach provided significantly better results for the prediction of direct reactions from the single-step USPTO-MIT test set. Our model achieved 90.6% top-1 and 96.1% top-5 accuracy for its challenging mixed set and 97% top-5 accuracy for the USPTO-MIT separated set. It also significantly improved results for USPTO-full set single-step retrosynthesis for both top-1 and top-10 accuracies. The appearance frequency of the most abundantly generated SMILES was well correlated with the prediction outcome and can be used as a measure of the quality of reaction prediction.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Neural-network; Prediction; Outcomes; System; Smiles
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
2041-1723
e-ISSN
2041-1723
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 11,
Heft: 1,
Seiten: ,
Artikelnummer: 5575
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503000-001
Förderungen
NVIDIA Corporation
Intel
ERA-CVD "CardioOncology" project, BMBF
European Union's Horizon 2020 research and innovation program under the Marie Skodowska-Curie Innovative Training Network European Industrial Doctorate grant
Copyright
Erfassungsdatum
2020-12-09