PuSH - Publikationsserver des Helmholtz Zentrums München

Kraus, K.M. ; Oreshko, M.* ; Schnabel, J.A. ; Bernhardt, D.* ; Combs, S.E. ; Peeken, J.C.

Dosiomics and radiomics-based prediction of pneumonitis after radiotherapy and immune checkpoint inhibition: The relevance of fractionation.

Lung Cancer 189:107507 (2024)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
OBJECTIVES: Post-therapy pneumonitis (PTP) is a relevant side effect of thoracic radiotherapy and immunotherapy with checkpoint inhibitors (ICI). The influence of the combination of both, including dose fractionation schemes on PTP development is still unclear. This study aims to improve the PTP risk estimation after radio(chemo)therapy (R(C)T) for lung cancer with and without ICI by investigation of the impact of dose fractionation on machine learning (ML)-based prediction. MATERIALS AND METHODS: Data from 100 patients who received fractionated R(C)T were collected. 39 patients received additional ICI therapy. Computed Tomography (CT), RT segmentation and dose data were extracted and physical doses were converted to 2-Gy equivalent doses (EQD2) to account for different fractionation schemes. Features were reduced using Pearson intercorrelation and the Boruta algorithm within 1000-fold bootstrapping. Six single (clinics, Dose Volume Histogram (DVH), ICI, chemotherapy, radiomics, dosiomics) and four combined models (radiomics + dosiomics, radiomics + DVH + Clinics, dosiomics + DVH + Clinics, radiomics + dosiomics + DVH + Clinics) were trained to predict PTP. Dose-based models were tested using physical dose and EQD2. Four ML-algorithms (random forest (rf), logistic elastic net regression, support vector machine, logitBoost) were trained and tested using 5-fold nested cross validation and Synthetic Minority Oversampling Technique (SMOTE) for resampling in R. Prediction was evaluated using the area under the receiver operating characteristic curve (AUC) on the test sets of the outer folds. RESULTS: The combined model of all features using EQD2 surpassed all other models (AUC = 0.77, Confidence Interval CI 0.76-0.78). DVH, clinical data and ICI therapy had minor impact on PTP prediction with AUC values between 0.42 and 0.57. All EQD2-based models outperformed models based on physical dose. CONCLUSIONS: Radiomics + dosiomics based ML models combined with clinical and dosimetric models were found to be suited best for PTP prediction after R(C)T and could improve pre-treatment decision making. Different RT dose fractionation schemes should be considered for dose-based ML approaches.
Impact Factor
Scopus SNIP
Altmetric
4.500
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Dosiomics ; Immune Checkpoint Inhibition ; Lung Cancer ; Machine Learning-based Prediction ; Radiation Pneumonitis ; Radiomics; Toxicity
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 0169-5002
e-ISSN 1872-8332
Zeitschrift Lung Cancer
Quellenangaben Band: 189, Heft: , Seiten: , Artikelnummer: 107507 Supplement: ,
Verlag Elsevier
Verlagsort Amsterdam
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Radiation Medicine (IRM)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
Forschungsfeld(er) Radiation Sciences
Enabling and Novel Technologies
PSP-Element(e) G-501300-001
G-507100-001
Förderungen German Cancer Consortium (DKTK)
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
Scopus ID 85185759016
PubMed ID 38394745
Erfassungsdatum 2024-04-24