Papazova, I.* ; Wunderlich, S.* ; Papazov, B.* ; Vogelmann, U.* ; Keeser, D.* ; Karali, T.* ; Falkai, P.* ; Rospleszcz, S. ; Maurus, I.* ; Schmitt, A.* ; Hasan, A.* ; Malchow, B.* ; Stöcklein, S.*
Characterizing cognitive subtypes in schizophrenia using cortical curvature.
J. Psychiatr. Res. 173, 131-138 (2024)
Cognitive deficits are a core symptom of schizophrenia, but research on their neural underpinnings has been challenged by the heterogeneity in deficits' severity among patients. Here, we address this issue by combining logistic regression and random forest to classify two neuropsychological profiles of patients with high (HighCog) and low (LowCog) cognitive performance in two independent samples. We based our analysis on the cortical features grey matter volume (VOL), cortical thickness (CT), and mean curvature (MC) of N = 57 patients (discovery sample) and validated the classification in an independent sample (N = 52). We investigated which cortical feature would yield the best classification results and expected that the 10 most important features would include frontal and temporal brain regions. The model based on MC had the best performance with area under the curve (AUC) values of 76% and 73%, and identified fronto-temporal and occipital brain regions as the most important features for the classification. Moreover, subsequent comparison analyses could reveal significant differences in MC of single brain regions between the two cognitive profiles. The present study suggests MC as a promising neuroanatomical parameter for characterizing schizophrenia cognitive subtypes.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Cognitive Subtypes ; Cortical Curvature ; Schizophrenia; Surface-based Analysis; Human Cerebral-cortex; Neurocognitive Deficits; Intrinsic Curvature; Longitudinal Course; Brain Structure; Thickness; Gyrification; Classification; Connectivity
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
0022-3956
e-ISSN
1879-1379
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 173,
Heft: ,
Seiten: 131-138
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-504000-010
Förderungen
Federal Ministry of Education and Research (BMBF)
Copyright
Erfassungsdatum
2024-04-25