PuSH - Publikationsserver des Helmholtz Zentrums München

Modirshanechi, A. ; Lin, W.H.* ; Xu, H.A.* ; Herzog, M.H.* ; Gerstner, W.*

Novelty as a drive of human exploration in complex stochastic environments.

Proc. Natl. Acad. Sci. U.S.A. 122:e2502193122 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
In order to find extrinsic rewards, humans explore their environment even if exploration requires several intermediate, reward-free decisions. It has been hypothesized that intrinsic rewards, such as novelty, surprise, or information gain, guide this reward-free exploration. However, in artificial agents, different intrinsic reward signals induce exploration strategies that respond differently to stochasticity. In particular, some strategies are vulnerable to the "noisy TV problem," i.e., an attraction to irrelevant stochastic stimuli. Here, we ask whether humans exhibit a similar attraction to reward-free stochasticity. We design a multistep decision-making paradigm in which participants search for rewarding states in a complex environment containing a highly stochastic but reward-free subregion. We show that i) participants persistently explore the stochastic subregion, and ii) their decisions are best explained by a novelty-driven exploration strategy, compared to alternatives driven by information gain or surprise. Our findings suggest that novelty and extrinsic rewards jointly control human exploration in complex environments.
Impact Factor
Scopus SNIP
Altmetric
9.100
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Exploration ; Human Behavior ; Information-seeking ; Reinforcement Learning; Bayesian Model Selection; Information; Curiosity; Exploitation; Uncertainty; Systems; Reward
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 0027-8424
e-ISSN 1091-6490
Quellenangaben Band: 122, Heft: 39, Seiten: , Artikelnummer: e2502193122 Supplement: ,
Verlag National Academy of Sciences
Verlagsort 2101 Constitution Ave Nw, Washington, Dc 20418 Usa
Begutachtungsstatus Peer reviewed
Institut(e) Institute of AI for Health (AIH)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540011-001
Förderungen European Union
Swiss NSF
Scopus ID 105016909208
PubMed ID 40996802
Erfassungsdatum 2025-10-21