Novelty as a drive of human exploration in complex stochastic environments.
Proc. Natl. Acad. Sci. U.S.A. 122:e2502193122 (2025)
In order to find extrinsic rewards, humans explore their environment even if exploration requires several intermediate, reward-free decisions. It has been hypothesized that intrinsic rewards, such as novelty, surprise, or information gain, guide this reward-free exploration. However, in artificial agents, different intrinsic reward signals induce exploration strategies that respond differently to stochasticity. In particular, some strategies are vulnerable to the "noisy TV problem," i.e., an attraction to irrelevant stochastic stimuli. Here, we ask whether humans exhibit a similar attraction to reward-free stochasticity. We design a multistep decision-making paradigm in which participants search for rewarding states in a complex environment containing a highly stochastic but reward-free subregion. We show that i) participants persistently explore the stochastic subregion, and ii) their decisions are best explained by a novelty-driven exploration strategy, compared to alternatives driven by information gain or surprise. Our findings suggest that novelty and extrinsic rewards jointly control human exploration in complex environments.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Exploration ; Human Behavior ; Information-seeking ; Reinforcement Learning; Bayesian Model Selection; Information; Curiosity; Exploitation; Uncertainty; Systems; Reward
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0027-8424
e-ISSN
1091-6490
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 122,
Heft: 39,
Seiten: ,
Artikelnummer: e2502193122
Supplement: ,
Reihe
Verlag
National Academy of Sciences
Verlagsort
2101 Constitution Ave Nw, Washington, Dc 20418 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of AI for Health (AIH)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540011-001
Förderungen
European Union
Swiss NSF
Copyright
Erfassungsdatum
2025-10-21