PuSH - Publikationsserver des Helmholtz Zentrums München

Robust parameter estimation for dynamical systems from outlier-corrupted data.

Bioinformatics 33, 1-8 (2017)
Verlagsversion Postprint Forschungsdaten DOI
Open Access Gold
Motivation: Dynamics of cellular processes are often studied using mechanistic mathematical models. These models possess unknown parameters which are generally estimated from experimental data assuming normally distributed measurement noise. Outlier corruption of datasets often cannot be avoided. These outliers may distort the parameter estimates, resulting in incorrect model predictions. Robust parameter estimation methods are required which provide reliable parameter estimates in the presence of outliers. Results: In this manuscript, we propose and evaluate methods for estimating the parameters of ordinary differential equation (ODE) models from outlier-corrupted data. As alternatives to the normal distribution as noise distribution, we consider the Laplace, the Huber, the Cauchy and the Student’s t distribution. We assess accuracy, robustness and computational efficiency of estimators using these different distribution assumptions. To this end, we consider artificial data of a conversion process, as well as published experimental data for Epo-induced JAK/STAT signaling. We study how well the methods can compensate and discover artificially introduced outliers. Our evaluation reveals that using alternative distributions improves the robustness of parameter estimates. Availability: The MATLAB implementation of the likelihood functions using the distribution assumptions is available at Bioinformatics online.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
7.307
2.099
17
20
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Differential-equation Models; T-distribution; Likelihood; Biology; Location
Sprache englisch
Veröffentlichungsjahr 2017
Prepublished im Jahr 2016
HGF-Berichtsjahr 2016
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 33, Heft: 5, Seiten: 1-8 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
G-553800-001
Scopus ID 85020126410
Erfassungsdatum 2016-12-01